Pridopidine activates neuroprotective pathways impaired in Huntington Disease

作者: Michal Geva , Rebecca Kusko , Holly Soares , Kevin D. Fowler , Tal Birnberg

DOI: 10.1093/HMG/DDW238

关键词:

摘要: Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints clinical trials. Originally described a dopamine stabilizer, this mechanism is insufficient to explain the and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms action. The effect pridopidine versus sham treatment on genome-wide expression profiling rat striatum was analysed compared pathological profile Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis conducted, followed testing enrichment relevant pathways. upregulated BDNF (P = 1.73E-10), its secretion sigma 1 receptor (S1R) dependent. Many same genes were independently found be downregulated KI mice WT (5.2e-7 < P < 0.04). In addition, glucocorticoid (GR) response, D1R-associated AKT/PI3K (P = 1E-10, P = 0.001, P = 0.004, respectively). upregulates BDNF, D1R, GR pathways, known promote neuronal plasticity survival, well reported demonstrate therapeutic benefit HD animal Activation S1R, necessary for pathway, represents core component mode action Since newly identified pathways are neurodegenerative diseases, including HD, these findings suggest that may exert neuroprotective beyond role alleviating some HD.

参考文章(58)
K Sahlholm, P Århem, K Fuxe, D Marcellino, The dopamine stabilizers ACR16 and (-)-OSU6162 display nanomolar affinities at the σ-1 receptor. Molecular Psychiatry. ,vol. 18, pp. 12- 14 ,(2013) , 10.1038/MP.2012.3
Emily R. Fisher, Michael R. Hayden, Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk Movement Disorders. ,vol. 29, pp. 105- 114 ,(2014) , 10.1002/MDS.25717
Karen Brami-Cherrier, Emmanuel Valjent, Marta Garcia, Christiane Pagès, Robert A. Hipskind, Jocelyne Caboche, Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation. The Journal of Neuroscience. ,vol. 22, pp. 8911- 8921 ,(2002) , 10.1523/JNEUROSCI.22-20-08911.2002
D Herve, M Levi-Strauss, I Marey-Semper, C Verney, JP Tassin, J Glowinski, JA Girault, G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase The Journal of Neuroscience. ,vol. 13, pp. 2237- 2248 ,(1993) , 10.1523/JNEUROSCI.13-05-02237.1993
J. C. Corvol, J. M. Studler, J. S. Schonn, J. A. Girault, D. Hervé, Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. Journal of Neurochemistry. ,vol. 76, pp. 1585- 1588 ,(2001) , 10.1046/J.1471-4159.2001.00201.X
Paul A. Dijkhuizen, Anirvan Ghosh, BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. Journal of Neurobiology. ,vol. 62, pp. 278- 288 ,(2005) , 10.1002/NEU.20100
Palle Christophersen, Nicholas Waters, Tino Dyhring, Elsebet Ø. Nielsen, Clas Sonesson, Fredrik Pettersson, Jonas Karlsson, Peder Svensson, The dopaminergic stabilizers pridopidine (ACR16) and (―)-OSU6162 display dopamine D2 receptor antagonism and fast receptor dissociation properties European Journal of Pharmacology. ,vol. 628, pp. 19- 26 ,(2010) , 10.1016/J.EJPHAR.2009.11.025
Amr Al-Saif, Futwan Al-Mohanna, Saeed Bohlega, A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Annals of Neurology. ,vol. 70, pp. 913- 919 ,(2011) , 10.1002/ANA.22534
T. Numakawa, E. Kumamaru, N. Adachi, Y. Yagasaki, A. Izumi, H. Kunugi, Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-γ signaling for glutamate release via a glutamate transporter Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 647- 652 ,(2009) , 10.1073/PNAS.0800888106
V Brito, M Puigdellívol, A Giralt, D del Toro, J Alberch, S Ginés, Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies Cell Death and Disease. ,vol. 4, ,(2013) , 10.1038/CDDIS.2013.116