Proper Vertex Connection and Graph Operations

作者: YINGYING ZHANG , XIAOYU ZHU

DOI: 10.1142/S0219265919500014

关键词:

摘要: A path in a vertex-colored graph is vertex-proper if any two internal adjacent vertices differ color. proper vertex k-connected of the ...

参考文章(18)
Yaping Mao, Fengnan Yanling, Zhao Wang, Chengfu Ye, Rainbow vertex-connection and graph products International Journal of Computer Mathematics. ,vol. 93, pp. 1078- 1092 ,(2016) , 10.1080/00207160.2015.1047356
Hui Jiang, Xueliang Li, Yingying Zhang, Yan Zhao, On (Strong) Proper Vertex-Connection of Graphs Bulletin of the Malaysian Mathematical Sciences Society. ,vol. 41, pp. 415- 425 ,(2018) , 10.1007/S40840-015-0271-5
Henry Liu, Ângela Mestre, Teresa Sousa, Rainbow vertexk-connection in graphs Discrete Applied Mathematics. ,vol. 161, pp. 2549- 2555 ,(2013) , 10.1016/J.DAM.2013.04.025
Yaping Mao, Path-connectivity of lexicographic product graphs International Journal of Computer Mathematics. ,vol. 93, pp. 27- 39 ,(2016) , 10.1080/00207160.2014.987762
Feng Bao, Yoshihide Igarashi, Sabine R. Öhring, Reliable broadcasting in product networks Discrete Applied Mathematics. ,vol. 83, pp. 3- 20 ,(1998) , 10.1016/S0166-218X(97)00100-5
Paraskevi Fragopoulou, Selim G. Akl, Henk Meijer, Optimal Communication Primitives on the Generalized HypercubeNetwork Journal of Parallel and Distributed Computing. ,vol. 32, pp. 173- 187 ,(1996) , 10.1006/JPDC.1996.0012
Alon Itai, Michael Rodeh, The multi-tree approach to reliability in distributed networks Information & Computation. ,vol. 79, pp. 43- 59 ,(1988) , 10.1016/0890-5401(88)90016-8
Xueliang Li, Yongtang Shi, Yuefang Sun, Rainbow Connections of Graphs: A Survey Graphs and Combinatorics. ,vol. 29, pp. 1- 38 ,(2013) , 10.1007/S00373-012-1243-2
Neil J. Calkin, Herbert S. Wilf, The Number of Independent Sets in a Grid Graph SIAM Journal on Discrete Mathematics. ,vol. 11, pp. 54- 60 ,(1998) , 10.1137/S089548019528993X
Bijo S. Anand, Manoj Changat, Sandi Klavžar, Iztok Peterin, Convex Sets in Lexicographic Products of Graphs Graphs and Combinatorics. ,vol. 28, pp. 77- 84 ,(2012) , 10.1007/S00373-011-1031-4