On the problem of asymptotic positivity of solutions for dissipative partial differential equations.

作者: M.V. Bartuccelli , S.A. Gourley

DOI: 10.1023/A:1005113116218

关键词:

摘要: The objective of this paper aims to prove positivity solutions for the following semilinear partial differential equationu\(u_t = - \alpha u_{xxxx} + (u^2 )_{xx} u(1 u^2 )\). This equation represents a generalised model so-called porous medium equation. It arises in variety meaningful physical situations including gas flows, diffusion an electron-ion plasma and dynamics biological populations whose mobility is density dependent. In all these must be positive functions.

参考文章(7)
L. Nirenberg, On elliptic partial differential equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 13, pp. 115- 162 ,(1959) , 10.1007/978-3-642-10926-3_1
M.V. Bartuccelli, S.A. Gourley, C.J. Woolcock, Conditions for positivity of solutions of a class of dissipative partial differential equations Applied Mathematics Letters. ,vol. 11, pp. 71- 74 ,(1998) , 10.1016/S0893-9659(98)00105-0
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
M V Bartuccelli, S A Gourley, C J Woolcock, Length Scales in Solutions of a Generalized Diffusion Model Physica Scripta. ,vol. 57, pp. 9- 19 ,(1998) , 10.1088/0031-8949/57/1/001
Michele V. Bartuccelli, John D. Gibbon, Marcel Oliver, Length scales in solutions of the complex Ginzburg-Landau equation Physica D: Nonlinear Phenomena. ,vol. 89, pp. 267- 286 ,(1996) , 10.1016/0167-2789(95)00275-8
Donald S. Cohen, James D. Murray, A generalized diffusion model for growth and dispersal in a population Journal of Mathematical Biology. ,vol. 12, pp. 237- 249 ,(1981) , 10.1007/BF00276132
M V Bartuccelli, C R Doering, J D Gibbon, S J A Malham, Length scales in solutions of the Navier-Stokes equations Nonlinearity. ,vol. 6, pp. 549- 568 ,(1993) , 10.1088/0951-7715/6/4/003