The Shafarevich conjecture for hypersurfaces in abelian varieties

作者: Will Sawin , Brian Lawrence

DOI:

关键词:

摘要: Faltings proved that there are finitely many abelian varieties of genus $g$ a number field $K$, with good reduction outside finite set primes $S$. Fixing one these $A$, we prove smooth hypersurfaces in $S$, representing given ample class the Neron-Severi group up to translation, as long dimension $A$ is at least $4$. Our approach builds on arXiv:1807.02721 which studies $p$-adic variations Hodge structure turn finiteness results for Galois representations into geometric statements. A key new ingredient an proving big monodromy arising from middle cohomology using Tannakian theory sheaf convolution varieties.

参考文章(43)
Nicholas Michael Katz, Moments, monodromy, and perversity : a diophantine perspective Annals of Mathematics Studies. pp. 1- 475 ,(2005)
Par P. Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points Mathematical Sciences Research Institute Publications. pp. 79- 297 ,(1989) , 10.1007/978-1-4613-9649-9_3
Arthur Ogus, Pierre Berthelot, Notes on Crystalline Cohomology. ,(1978)
Reinhardt Kiehl, Eberhard Freitag, Etale Cohomology and the Weil Conjecture ,(1988)
Rainer Weissauer, Thomas Krämer, On the Tannaka group attached to the Theta divisor of a generic principally polarized abelian variety Mathematische Zeitschrift. ,vol. 281, pp. 723- 745 ,(2015) , 10.1007/S00209-015-1505-9
Michael Bate, Sebastian Herpel, Benjamin Martin, Gerhard Röhrle, Cocharacter-closure and the rational Hilbert–Mumford Theorem Mathematische Zeitschrift. ,vol. 287, pp. 39- 72 ,(2017) , 10.1007/S00209-016-1816-5
Rainer Weissauer, Brill-Noether Sheaves arXiv: Algebraic Geometry. ,(2006)