Total Least-Squares Estimation for 2D Affine Coordinate Transformation with Constraints on Physical Parameters

作者: Songlin Zhang , Kun Zhang , Pengcheng Liu

DOI: 10.1061/(ASCE)SU.1943-5428.0000180

关键词:

摘要: AbstractThe error-in-variable (EIV) model takes the error of all variables into account and has been widely applied to many practical problems arising in environmental study, geology, geographic information science (GIS), geodesy. Coordinate transformations are among most frequently encountered spatial data processing, EIV can be built based on two sets coordinates. In some applications, physical parameters—such as shift, rotation angle, scale factor—have constraints. Current implementations constrained (CEIV) do not consider constraints explicitly. The purpose this paper is convert mathematical forms use total least squares (CTLS) solve CEIV problem two-dimensional (2D) affine transformation. effectiveness method illustrated through a numerical example.

参考文章(16)
Michael K. Ng, Nirmal K. Bose, Jaehoon Koo, Constrained Total Least Squares for Color Image Reconstruction Springer Netherlands. pp. 365- 374 ,(2002) , 10.1007/978-94-017-3552-0_32
Giansalvo Cirrincione, TLS AND CONSTRAINED TLS NEURAL NETWORKS FOR COMPUTER VISION Springer Netherlands. pp. 385- 395 ,(2002) , 10.1007/978-94-017-3552-0_34
B. Schaffrin, Y.A. Felus, Multivariate Total Least – Squares Adjustment for Empirical Affine Transformations Springer, Berlin, Heidelberg. pp. 238- 242 ,(2008) , 10.1007/978-3-540-74584-6_38
Burkhard Schaffrin, Yaron A. Felus, On Total Least-Squares Adjustment with Constraints Springer, Berlin, Heidelberg. pp. 417- 421 ,(2005) , 10.1007/3-540-27432-4_71
T. Abatzoglou, J. Mendel, Constrained total least squares international conference on acoustics, speech, and signal processing. ,vol. 12, pp. 1485- 1488 ,(1987) , 10.1109/ICASSP.1987.1169438
Richard H Rapp, Geometric Geodesy Part I Ohio State University Department of Geodetic Science and Surveying. ,(1991)
Thomas G. Davis, Total Least-Squares Spiral Curve Fitting Journal of Surveying Engineering-asce. ,vol. 125, pp. 159- 176 ,(1999) , 10.1061/(ASCE)0733-9453(1999)125:4(159)
Gene H. Golub, Charles F. van Loan, An Analysis of the Total Least Squares Problem SIAM Journal on Numerical Analysis. ,vol. 17, pp. 883- 893 ,(1980) , 10.1137/0717073