Multi-fusion categories of Harish-Chandra bimodules

作者: Victor Ostrik

DOI:

关键词:

摘要: We survey some results on tensor products of irreducible Harish-Chandra bimodules. It turns out that such are semisimple in suitable Serre quotient categories. explain how to identify the resulting categories and describe applications representation theory.

参考文章(29)
Christopher Dodd, Injectivity of a certain cycle map for finite dimensional W-algebras arXiv: Representation Theory. ,(2010)
David Ben-Zvi, David Nadler, The Character Theory of a Complex Group arXiv: Representation Theory. ,(2009)
A. Premet, Primitive ideals, non-restricted representations and finite W-algebras Moscow Mathematical Journal. ,vol. 7, pp. 743- 762 ,(2007) , 10.17323/1609-4514-2007-7-4-743-762
The combinatorics of Harish-Chandra bimodules. Crelle's Journal. ,vol. 1992, pp. 49- 74 ,(1992) , 10.1515/CRLL.1992.429.49
Wee Gan, Victor Ginzburg, Quantization of Slodowy slices International Mathematics Research Notices. ,vol. 2002, pp. 243- 255 ,(2002) , 10.1155/S107379280210609X
Roman Bezrukavnikov, Michael Finkelberg, Victor Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules Inventiones mathematicae. ,vol. 188, pp. 589- 620 ,(2012) , 10.1007/S00222-011-0354-3
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031
André Joyal, Ross Street, Tortile Yang-Baxter operators in tensor categories Journal of Pure and Applied Algebra. ,vol. 71, pp. 43- 51 ,(1991) , 10.1016/0022-4049(91)90039-5
Ivan Losev, Quantized symplectic actions and W -algebras Journal of the American Mathematical Society. ,vol. 23, pp. 35- 59 ,(2010) , 10.1090/S0894-0347-09-00648-1
Anthony Joseph, A sum rule for scale factors in the Goldie rank polynomials Journal of Algebra. ,vol. 118, pp. 276- 311 ,(1988) , 10.1016/0021-8693(88)90022-1