Exogenous Parameters in Solar Forecasting

作者: Giovanni Scabbia , Antonio Sanfilippo , Dunia Bachour , Daniel Perez-Astudillo

DOI: 10.1109/PVSC45281.2020.9300800

关键词:

摘要: The ability to predict solar radiation reliably is crucial in optimizing energy integration, ensuring grid stability and regulating markets. One way improve accuracy forecasting with time series modeling use exogenous variables (e.g. temperature, humidity, pressure, wind speed, direction) addition measurements. Evidence from existing studies indicates that the extent which such can largely dependent on type of algorithm used. Our results indicate scope prediction target (lag duration, number steps ahead) also plays an important role determining results. More specifically, accurate pairing algorithms help achieve improvements longer lags at diverse horizons. These argue favor a multi-modeling approach where specific configurations are determined dynamically for each choice input.

参考文章(11)
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
R. Perez, P. Ineichen, R. Seals, A. Zelenka, Making full use of the clearness index for parameterizing hourly insolation conditions Solar Energy. ,vol. 45, pp. 111- 114 ,(1990) , 10.1016/0038-092X(90)90036-C
Maimouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Renewable & Sustainable Energy Reviews. ,vol. 27, pp. 65- 76 ,(2013) , 10.1016/J.RSER.2013.06.042
Rich H. Inman, Hugo T.C. Pedro, Carlos F.M. Coimbra, Solar forecasting methods for renewable energy integration Progress in Energy and Combustion Science. ,vol. 39, pp. 535- 576 ,(2013) , 10.1016/J.PECS.2013.06.002
D. Perez-Astudillo, D. Bachour, DNI, GHI and DHI ground measurements in Doha, Qatar Energy Procedia. ,vol. 49, pp. 2398- 2404 ,(2014) , 10.1016/J.EGYPRO.2014.03.254
Antonio Sanfilippo, Luis Martin-Pomares, Nassma Mohandes, Daniel Perez-Astudillo, Dunia Bachour, An adaptive multi-modeling approach to solar nowcasting Solar Energy. ,vol. 125, pp. 77- 85 ,(2016) , 10.1016/J.SOLENER.2015.11.041
D. K. Chaturvedi, Isha, Solar Power Forecasting: A Review International Journal of Computer Applications. ,vol. 145, pp. 28- 50 ,(2016)
Cyril Voyant, Gilles Notton, Soteris Kalogirou, Marie-Laure Nivet, Christophe Paoli, Fabrice Motte, Alexis Fouilloy, Machine learning methods for solar radiation forecasting: A review Renewable Energy. ,vol. 105, pp. 569- 582 ,(2017) , 10.1016/J.RENENE.2016.12.095
Caroline Persson, Peder Bacher, Takahiro Shiga, Henrik Madsen, Multi-site solar power forecasting using gradient boosted regression trees Solar Energy. ,vol. 150, pp. 423- 436 ,(2017) , 10.1016/J.SOLENER.2017.04.066