Tomography for Several Particles with One Random Variable

作者: AS Arkhipov , Yu E Lozovik , VI Man'ko

DOI: 10.1023/A:1024051809262

关键词:

摘要: The tomographic map of the quantum state a system with several degrees freedom, which depends on one random variable, analogous to rotated and scaled center-of-mass system, is constructed. time-evolution equation tomogram for this given in explicit form. properties such as transition probabilities between different states relation star-product formalism are elucidated. An example multimode oscillator considered detail. Identical particles discussed within framework proposed tomography scheme.

参考文章(24)
V.I. Man'ko, R. Vilela Mendes, Non-commutative time-frequency tomography Physics Letters A. ,vol. 263, pp. 53- 61 ,(1999) , 10.1016/S0375-9601(99)00688-X
Octavio Casta os, Ram n L pez-Pe a, Margarita A Man ko, Vladimir I Man ko, Kernel of star-product for spin tomograms Journal of Physics A. ,vol. 36, pp. 4677- 4688 ,(2003) , 10.1088/0305-4470/36/16/316
Ulf Leonhardt, Discrete Wigner function and quantum-state tomography Physical Review A. ,vol. 53, pp. 2998- 3013 ,(1996) , 10.1103/PHYSREVA.53.2998
S Mancini, V I Man'ko, P Tombesi, Wigner function and probability distribution for shifted and squeezed quadratures Quantum and Semiclassical Optics: Journal of The European Optical Society Part B. ,vol. 7, pp. 615- 623 ,(1995) , 10.1088/1355-5111/7/4/016
M. G. Raymer, M. Beck, D. McAlister, Complex wave-field reconstruction using phase-space tomography. Physical Review Letters. ,vol. 72, pp. 1137- 1140 ,(1994) , 10.1103/PHYSREVLETT.72.1137
V.I. Man’ko, R. Vilela Mendes, Lyapunov exponent in quantum mechanics a phase-space approach Physica D: Nonlinear Phenomena. ,vol. 145, pp. 330- 348 ,(2000) , 10.1016/S0167-2789(00)00117-2
AB Klimov, Olga V Man'ko, VI Man'ko, Yu F Smirnov, VN Tolstoy, Tomographic representation of spin and quark states Journal of Physics A. ,vol. 35, pp. 6101- 6123 ,(2002) , 10.1088/0305-4470/35/29/312
G M D'Ariano, S Mancini, V I Man'ko, P Tombesi, Reconstructing the density operator by using generalized field quadratures Quantum and Semiclassical Optics: Journal of The European Optical Society Part B. ,vol. 8, pp. 1017- 1027 ,(1996) , 10.1088/1355-5111/8/5/007