Dimensional Crossover in Quantum Antiferromagnets.

作者: Sudip Chakravarty

DOI: 10.1103/PHYSREVLETT.77.4446

关键词:

摘要: The dimensional crossover in a spin-S nearest-neighbor Heisenberg antiferromagnet is discussed as it tuned from two-dimensional square lattice, of lattice spacing a, towards spin chain by varying the width ${L}_{y}$ semi-infinite strip ${L}_{x}\ifmmode\times\else\texttimes\fi{}{L}_{y}$. For integer spins and arbitrary ${L}_{y}$, for half with ${L}_{y}/a$ an even integer, explicit analytical expressions zero temperature correlation length gap are given. odd argued that $c\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1$ behavior SU(2${)}_{1}$ Wess-Zumino-Witten fixed point squeezed out ${L}_{y}\ensuremath{\rightarrow}\ensuremath{\infty}$; here c conformal charge. results specialized to $S\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\frac{1}{2}$ applied spin-ladder systems.

参考文章(24)
Eduardo Fradkin, Field theories of condensed matter systems Addison-Wesley Pub. Co.. ,(1991)
Ian Affleck, The quantum hall effects, σ-models at Θ=π and quantum spin chains Nuclear Physics. ,vol. 257, pp. 397- 406 ,(1985) , 10.1016/0550-3213(85)90353-0
Stephen H. Shenker, Jan Tobochnik, Monte Carlo renormalization-group analysis of the classical Heisenberg model in two dimensions Physical Review B. ,vol. 22, pp. 4462- 4472 ,(1980) , 10.1103/PHYSREVB.22.4462
C. J. Hamer, John B. Kogut, L. Susskind, Strong Coupling Expansions and Phase Diagrams for the O(2), O(3) and O(4) Heisenberg Spin Systems in Two-dimensions Physical Review D. ,vol. 19, pp. 3091- 3105 ,(1979) , 10.1103/PHYSREVD.19.3091
P.B. Wiegmann, Exact solution of the O(3) nonlinear σ-model Physics Letters B. ,vol. 152, pp. 209- 214 ,(1985) , 10.1016/0370-2693(85)91171-2
Ian Affleck, F. D. M. Haldane, Critical theory of quantum spin chains. Physical Review B. ,vol. 36, pp. 5291- 5300 ,(1987) , 10.1103/PHYSREVB.36.5291
Tom Kennedy, Elliott H. Lieb, B. Sriram Shastry, Existence of Néel order in some spin-1/2 Heisenberg antiferromagnets Journal of Statistical Physics. ,vol. 53, pp. 1019- 1030 ,(1988) , 10.1007/BF01023854