Combinatorial relations for digital pictures

作者: Valentin E. Brimkov , Davide Moroni , Reneta Barneva

DOI: 10.1007/11907350_16

关键词:

摘要: In this paper we define the notion of gap in an arbitrary digital picture S a space dimension As main result, obtain explicit formula for number gaps maximal We also derive combinatorial relation curve.

参考文章(18)
Valentin E. Brimkov, Angelo Maimone, Giorgio Nordo, Reneta P. Barneva, Reinhard Klette, The Number of Gaps in Binary Pictures Advances in Visual Computing. pp. 35- 42 ,(2005) , 10.1007/11595755_5
Valentin E. Brimkov, Reinhard Klette, Curves, hypersurfaces, and good pairs of adjacency relations international workshop on combinatorial image analysis. pp. 276- 290 ,(2004) , 10.1007/978-3-540-30503-3_21
J. P. Mylopoulos, T. Pavlidis, On the Topological Properties of Quantized Spaces, I. The Notion of Dimension Journal of the ACM. ,vol. 18, pp. 239- 246 ,(1971) , 10.1145/321637.321644
Eric Andres, Raj Acharya, Claudio Sibata, Discrete analytical hyperplanes Graphical Models and Image Processing. ,vol. 59, pp. 302- 309 ,(1997) , 10.1006/GMIP.1997.0427
Eric Andrès, Philippe Nehlig, Jean Françon, Tunnel‐Free Supercover 3D Polygons and Polyhedra Computer Graphics Forum. ,vol. 16, pp. 3- 14 ,(2008) , 10.1111/1467-8659.16.3CONFERENCEISSUE.2
D. Cohen-Or, A. Kaufman, 3D line voxelization and connectivity control IEEE Computer Graphics and Applications. ,vol. 17, pp. 80- 87 ,(1997) , 10.1109/38.626973
Victor J. Dielissen, Anne Kaldewaij, Rectangular partition is polynomial in two dimensions but NP-complete in three Information Processing Letters. ,vol. 38, pp. 1- 6 ,(1991) , 10.1016/0020-0190(91)90207-X
J.E. Hershberger, J.S. Snoeyink, Erased arrangements of lines and convex decompositions of polyhedra Computational Geometry: Theory and Applications. ,vol. 9, pp. 129- 143 ,(1998) , 10.1016/S0925-7721(97)00024-2