作者: Hong Kai Zhao , Li Guang Xiao , Jing Wu Gao
DOI: 10.4028/WWW.SCIENTIFIC.NET/AMR.634-638.2032
关键词:
摘要: The thermoplastic composite material with general plastics and high-performance engineering plastics as the matrix has become the hot spot of current research, because of big viscosity of thermoplastic resin melt, the focal point of research has been long concentrated on the aspect of impregnation technology, therefore, it is of particular importance to theoretically build the percolation model for fibers impregnated with thermoplastic resin. In this paper a theoretical model for fibers impregnated with thermoplastic resin melt through percolation is established, this model characterizes the influential laws of process parameters, melt viscosity and fiber structure on impregnation time. The model shows that theoretical volume fraction of fibers of the molten nylon resin composite material is hard to reach over 70%; for the nylon resin melt after viscosity reduction treatment, the time for complete impregnation is still very long, and raising temperature or increasing pressure can only improve the impregnation effect to a certain degree.