Chaotic States of Anharmonic Systems in Periodic Fields

作者: B. A. Huberman , J. P. Crutchfield

DOI: 10.1103/PHYSREVLETT.43.1743

关键词:

摘要: It is shown that the nonlinear dynamics of anharmonically interacting particles in presence periodic fields leads to a set cascading bifurcations into chaotic state. This state characterized by existence strange attractor phase space and associated broadband noise spectral density. suggested solid-state turbulence likely be found weakly pinned charge-density-wave systems superionic conductors.

参考文章(19)
Guenter Ahlers, R. P. Behringer, The Rayleigh-Bénard Instability and the Evolution of Turbulence Progress of Theoretical Physics Supplement. ,vol. 64, pp. 186- 201 ,(1978) , 10.1143/PTPS.64.186
Harry L. Swinney, Jerry P. Gollub, The transition to turbulence Physics Today. ,vol. 31, pp. 41- 49 ,(1978) , 10.1063/1.2995142
I. Shimada, T. Nagashima, The Iterative Transition Phenomenon between Periodic and Turbulent States in a Dissipative Dynamical System Progress of Theoretical Physics. ,vol. 59, pp. 1033- 1036 ,(1978) , 10.1143/PTP.59.1033
Robert M. May, Simple mathematical models with very complicated dynamics Nature. ,vol. 261, pp. 459- 467 ,(1976) , 10.1038/261459A0
Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations Journal of Statistical Physics. ,vol. 19, pp. 25- 52 ,(1978) , 10.1007/BF01020332
Francis J. Di Salvo, T. Maurice Rice, Charge‐density waves in transition‐metal compounds Physics Today. ,vol. 32, pp. 32- 38 ,(1979) , 10.1063/1.2995488
J.B. Boyce, B.A. Huberman, Superionic conductors: Transitions, structures, dynamics Physics Reports. ,vol. 51, pp. 189- 265 ,(1979) , 10.1016/0370-1573(79)90067-X
P. A. Lee, T. M. Rice, Electric field depinning of charge density waves Physical Review B. ,vol. 19, pp. 3970- 3980 ,(1979) , 10.1103/PHYSREVB.19.3970
John Bardeen, Theory of Non-Ohmic Conduction from Charge-Density Waves in Nb Se 3 Physical Review Letters. ,vol. 42, pp. 1498- 1500 ,(1979) , 10.1103/PHYSREVLETT.42.1498