Runge–Kutta Residual Distribution Schemes

作者: Andrzej Warzyński , Matthew E. Hubbard , Mario Ricchiuto

DOI: 10.1007/S10915-014-9879-0

关键词:

摘要: We are concerned with the solution of time-dependent non-linear hyperbolic partial differential equations. investigate combination residual distribution methods a consistent mass matrix (discretisation in space) and Runge---Kutta-type time-stepping time). The introduced blending procedure allows us to retain explicit character procedure. resulting second order accurate provided that both spatial temporal approximations are. proposed approach results global linear system has be solved at each time-step. An efficient way solving this is also proposed. To test validate new framework, we perform extensive numerical experiments on wide variety classical problems. comparison our other multi-stage schemes given.

参考文章(66)
Armin Fuchs, One-dimensional Systems Springer, Berlin, Heidelberg. pp. 15- 35 ,(2013) , 10.1007/978-3-642-33552-5_2
W Gropp, P Brune, A Dener, S Abhyankar, K Rupp, B Smith, S Balay, D May, T Munson, D Kaushik, H Zhang, K Buschelman, M Knepley, R Mills, L Curfman McInnes, L Dalcin, J Brown, P Sanan, D Karpeyev, M Adams, S Zampini, Eijkhout, PETSc Users Manual Argonne National Laboratory. ,(2019)
Mark I. Freidlin, Alexander D. Wentzell, The Multidimensional Case Grundlehren der mathematischen Wissenschaften. pp. 355- 389 ,(2012) , 10.1007/978-3-642-25847-3_9
R. Struijs, P. L. Roe, Herman Deconinck, Fluctuation splitting schemes for the 2D Euler equations Lecture series - van Kareman Institute for fluid dynamics. ,vol. 1, ,(1991)
M. Feistauer, J. Felcman, I. Straškraba, Mathematical and Computational Methods for Compressible Flow ,(2003)
Pierre-Arnaud Raviart, Edwige Godlewski, Numerical Approximation of Hyperbolic Systems of Conservation Laws ,(1996)
Herman Deconinck, Mario Ricchiuto, Residual Distribution Schemes: Foundations and Analysis Encyclopedia of Computational Mechanics. pp. 1- 53 ,(2007) , 10.1002/0470091355.ECM054
Dietmar Kröner, Numerical schemes for conservation laws Wiley , Teubner. ,(1997)