Effective Influence Spreading in Temporal Networks With Sequential Seeding

作者: Radosaw Michalski , Jarosaw Jankowski , Piotr Brodka

DOI: 10.1109/ACCESS.2020.3016913

关键词:

摘要: … for independent cascades influence model demonstrate that sequential seeding in majority of cases outperforms single stage seeding for real world temporal networks, even when they …

参考文章(41)
Jurgen Van Gael, Ralf Herbrich, Tauhid R. Zaman, David Stern, Predicting Information Spreading in Twitter ,(2010)
Radosław Michalski, Przemysław Kazienko, Maximizing Social Influence in Real-World Networks—The State of the Art and Current Challenges Propagation Phenomena in Real World Networks. pp. 329- 359 ,(2015) , 10.1007/978-3-319-15916-4_14
Jacob Goldenberg, Barak Libai, Eitan Muller, Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth Marketing Letters. ,vol. 12, pp. 211- 223 ,(2001) , 10.1023/A:1011122126881
Conrad Lee, Fergal Reid, Aaron McDaid, Neil Hurley, Seeding for pervasively overlapping communities Physical Review E. ,vol. 83, pp. 066107- ,(2011) , 10.1103/PHYSREVE.83.066107
Kundan Kandhway, Joy Kuri, How to run a campaign: Optimal control of SIS and SIR information epidemics Applied Mathematics and Computation. ,vol. 231, pp. 79- 92 ,(2014) , 10.1016/J.AMC.2013.12.164
R. M. Cyert, M. H. DeGroot, C. A. Holt, Sequential Investment Decisions with Bayesian Learning Management Science. ,vol. 24, pp. 712- 718 ,(1978) , 10.1287/MNSC.24.7.712
Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, James Scott, Impact of Human Mobility on Opportunistic Forwarding Algorithms IEEE Transactions on Mobile Computing. ,vol. 6, pp. 606- 620 ,(2007) , 10.1109/TMC.2007.1060
Oliver Hinz, Bernd Skiera, Christian Barrot, Jan U. Becker, Seeding Strategies for Viral Marketing: An Empirical Comparison Journal of Marketing. ,vol. 75, pp. 55- 71 ,(2011) , 10.1509/JM.10.0088
Jarosław Jankowski, Radosław Michalski, Przemysław Kazienko, Compensatory seeding in networks with varying avaliability of nodes advances in social networks analysis and mining. pp. 1242- 1249 ,(2013) , 10.1145/2492517.2500256