Lagrangian modelling of plankton motion: From deceptively simple random walks to Fokker–Planck and back again

作者: Andre W. Visser

DOI: 10.1016/J.JMARSYS.2006.07.007

关键词:

摘要: Abstract The movement of plankton, either by turbulent mixing or their own inherent motility, can be simulated in a Lagrangian framework as random walk. Validation walk simulations is essential. There continuum mathematically valid stochastic integration schemes upon which depend, each lead to radically different macro-scale dynamics expressed corresponding Fokker–Planck equations. In addition, diffusivity not unique parameter describing and its equation. Spatially varying translation speed turn frequency have effects on population distributions. requires extra information the form well-mixed condition for physical diffusion, detailed sensing ability, internal state modulation swimming response plankton motility.

参考文章(56)
J. Klafter, B. S. White, M. Levandowsky, Microzooplankton Feeding Behavior and the Levy Walk Springer Berlin Heidelberg. pp. 281- 296 ,(1990) , 10.1007/978-3-642-51664-1_20
Peter Turchin, Quantitative analysis of movement ,(1998)
Allan R. Robinson, James J. McCarthy, Brian J. Rothschild, Biological-physical interactions in the sea Harvard University Press. ,(2002)
Helmut Z. Baumert, Jürgen Sündermann, John Simpson, Marine Turbulence: Theories, Observations, and Models ,(2005)
J. M. Lackie, J. P. Armitage, Biology of the chemotactic response Cambridge University Press. ,(1990)
Simon A Levin, 明 大久保, Diffusion and Ecological Problems: Modern Perspectives ,(2013)
S. H. Hutner, André Lwoff, Biochemistry and physiology of protozoa. Biochemistry and physiology of protozoa.. ,vol. 1, ,(1951)
Mark J. Schnitzer, Theory of continuum random walks and application to chemotaxis Physical Review E. ,vol. 48, pp. 2553- 2568 ,(1993) , 10.1103/PHYSREVE.48.2553
H. G. Othmer, S. R. Dunbar, W. Alt, Models of dispersal in biological systems Journal of Mathematical Biology. ,vol. 26, pp. 263- 298 ,(1988) , 10.1007/BF00277392