On the Point Spectrum of Self-Adjoint Operators That Appears under Singular Perturbations of Finite Rank

作者: M. E. Dudkin , V. D. Koshmanenko

DOI: 10.1023/B:UKMA.0000018014.09570.EF

关键词:

摘要: We discuss purely singular finite-rank perturbations of a self-adjoint operator A in Hilbert space ℋ. The perturbed operators \(\tilde A\) are defined by the Krein resolvent formula \((\tilde - z)^{ 1} = (A + B_z \), Im z ≠ 0, where Bz such that dom ∩ |0}. For an arbitrary system orthonormal vectors \(\{ \psi _i \} _{i 1}^{n < \infty } \) satisfying condition span |ψ i |0} and collection real numbers \({\lambda}_i \in {\mathbb{R}}^1\), we construct solves eigenvalue problem A\psi {\lambda}_i {\psi}_i , 1, \ldots ,n\). prove uniqueness under rank n.

参考文章(17)
Volodymyr Koshmanenko, Mykola Dudkin, Singular Quadratic Forms Springer International Publishing. pp. 59- 121 ,(1999) , 10.1007/978-3-319-29535-0_5
Sergio Albeverio, Volodymyr Koshmanenko, Singular Rank One Perturbations of Self-Adjoint Operators and Krein Theory of Self-Adjoint Extensions Potential Analysis. ,vol. 11, pp. 279- 287 ,(1999) , 10.1023/A:1008651918800
Volodymyr Koshmanenko, Singular Quadratic Forms in Perturbation Theory Springer Netherlands. ,(1999) , 10.1007/978-94-011-4619-7
S. Albeverio, P. Kurasov, Rank One Perturbations, Approximations, and Selfadjoint Extensions Journal of Functional Analysis. ,vol. 148, pp. 152- 169 ,(1997) , 10.1006/JFAN.1996.3050
Johannes F. Brasche, Mark Malamud, Hagen Neidhardt, Weyl function and spectral properties of self-adjoint extensions Integral Equations and Operator Theory. ,vol. 43, pp. 264- 289 ,(2002) , 10.1007/BF01255563
S Albeverio, W Karwowski, V Koshmanenko, On negative eigenvalues of generalized laplace operators Reports on Mathematical Physics. ,vol. 48, pp. 359- 387 ,(2001) , 10.1016/S0034-4877(01)80095-1
V. D. Koshmanenko, O. V. Samoilenko, Singular perturbations of finite rank. Point spectrum Ukrainian Mathematical Journal. ,vol. 49, pp. 1335- 1344 ,(1997) , 10.1007/BF02487341