Sulfolobus acidocaldarius UDG Can Remove dU from the RNA Backbone: Insight into the Specific Recognition of Uracil Linked with Deoxyribose.

作者: Gang-Shun Yi , Wei-Wei Wang , Wei-Guo Cao , Feng-Ping Wang , Xi-Peng Liu

DOI: 10.3390/GENES8010038

关键词:

摘要: Sulfolobus acidocaldarius encodes family 4 and 5 uracil-DNA glycosylase (UDG). Two recombinant S. UDGs (SacUDG) were prepared biochemically characterized using oligonucleotides carrying a deaminated base. Both SacUDGs can remove deoxyuracil (dU) base from both double-stranded DNA single-stranded DNA. Interestingly, they U linked with deoxyribose RNA backbone, suggesting that the riboses on backbone have less effect recognition of dU hydrolysis C-N glycosidic bond. However, removal rU is inefficient, strong steric hindrance comes 2' hydroxyl ribose to uracil. cannot 2,2'-anhydro uridine, hypoxanthine, 7-deazaxanthine Compared 2 MUG, other an extra N-terminal structure consisting about 50 residues. Removal 46 residues SacUDG resulted in only 40% decrease activity, indicating [4Fe-4S] cluster truncated secondary are not key elements hydrolyzing Combining our biochemical structural results those groups, we discussed UDGs' catalytic mechanism possible repair reactions bases prokaryotes.

参考文章(41)
Shuja S. Malik, Christopher T. Coey, Kristen M. Varney, Edwin Pozharski, Alexander C. Drohat, Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Research. ,vol. 43, pp. 9541- 9552 ,(2015) , 10.1093/NAR/GKV890
M. M. Thayer, H. Ahern, D. Xing, R. P. Cunningham, J. A. Tainer, Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. The EMBO Journal. ,vol. 14, pp. 4108- 4120 ,(1995) , 10.1002/J.1460-2075.1995.TB00083.X
Clifford D Mol, Andrew S Arvai, Thomas J Begley, Richard P Cunningham, John A Tainer, Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. Journal of Molecular Biology. ,vol. 315, pp. 373- 384 ,(2002) , 10.1006/JMBI.2001.5264
Geir Slupphaug, Clifford D. Mol, Bodil Kavli, Andrew S. Arvai, Hans E. Krokan, John A. Tainer, A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. ,vol. 384, pp. 87- 92 ,(1996) , 10.1038/384087A0
M. A. Greagg, M. J. Fogg, G. Panayotou, S. J. Evans, B. A. Connolly, L. H. Pearl, A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 9045- 9050 ,(1999) , 10.1073/PNAS.96.16.9045
James T. Stivers, Krzysztof W. Pankiewicz, Kyoichi A. Watanabe, Kinetic Mechanism of Damage Site Recognition and Uracil Flipping by Escherichia coli Uracil DNA Glycosylase Biochemistry. ,vol. 38, pp. 952- 963 ,(1999) , 10.1021/BI9818669
J. I. Lucas-Lledo, R. Maddamsetti, M. Lynch, Phylogenomic Analysis of the Uracil-DNA Glycosylase Superfamily Molecular Biology and Evolution. ,vol. 28, pp. 1307- 1317 ,(2011) , 10.1093/MOLBEV/MSQ318
Hyun-Wook Lee, Brian N. Dominy, Weiguo Cao, New Family of Deamination Repair Enzymes in Uracil-DNA Glycosylase Superfamily Journal of Biological Chemistry. ,vol. 286, pp. 31282- 31287 ,(2011) , 10.1074/JBC.M111.249524
John A. Hinks, Michael C.W. Evans, Yolanda de Miguel, Alessandro A. Sartori, Josef Jiricny, Laurence H. Pearl, An iron-sulfur cluster in the Family 4 uracil-DNA glycosylases Journal of Biological Chemistry. ,vol. 277, pp. 16936- 16940 ,(2002) , 10.1074/JBC.M200668200