Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges

作者: Cynthia Rudin , Chaofan Chen , Lesia Semenova , Zhi Chen , Chudi Zhong

DOI:

关键词:

摘要: … ; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even …

参考文章(283)
Geoffrey E. Hinton, Alex Krizhevsky, Sida D. Wang, Transforming auto-encoders international conference on artificial neural networks. pp. 44- 51 ,(2011) , 10.1007/978-3-642-21735-7_6
Arthur Guez, Joelle Pineau, Massimo Avoli, Robert D. Vincent, Adaptive treatment of epilepsy via batch-mode reinforcement learning innovative applications of artificial intelligence. pp. 1671- 1678 ,(2008)
Wei-Yin Loh, Yu-Shan Shih, SPLIT SELECTION METHODS FOR CLASSIFICATION TREES ,(1997)
Kush Varshney, Dmitry Malioutov, Exact Rule Learning via Boolean Compressed Sensing international conference on machine learning. pp. 765- 773 ,(2013)
Yann Chevaleyre, Fr d erick Koriche, Jean-daniel Zucker, Rounding Methods for Discrete Linear Classification international conference on machine learning. pp. 651- 659 ,(2013)
Geoffrey E. Hinton, Ruslan Salakhutdinov, Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure international conference on artificial intelligence and statistics. pp. 412- 419 ,(2007)
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Ian H. Witten, Eibe Frank, Generating Accurate Rule Sets Without Global Optimization international conference on machine learning. pp. 144- 151 ,(1998)
JEROME H. FRIEDMAN, NICHOLAS I. FISHER, Bump hunting in high-dimensional data Statistics and Computing. ,vol. 9, pp. 123- 143 ,(1999) , 10.1023/A:1008894516817
Bruce Guenther Baumgart, Geometric modeling for computer vision. Stanford University. ,(1974)