Statistical design of reverse dye microarrays.

作者: K. Dobbin , J. H. Shih , R. Simon

DOI: 10.1093/BIOINFORMATICS/BTG076

关键词:

摘要: Motivation: In cDNA microarray experiments all samples are labelled with either Cy3 dye or Cy5 dye. Certain genes exhibit bias—a tendency to bind more efficiently one of the dyes. The common reference design avoids problem bias by running arrays ‘forward’, so that being compared always same But comparison different dyes is sometimes interest. these situations, it necessary run some ‘reverse’—with labelling reversed—in order correct for bias. will impact one’s ability identify differentially expressed in tissues conditions. We address issue how many specimens needed, forward and reverse perform, optimally assign labels specimens. Results: consider three types which needed: paired samples, from two predefined groups, data when present simple probability models data, derive optimal estimators relative gene expression, compare efficiency a range designs. each case, we sample size formulas. show individual generally not required.

参考文章(31)
Sepideh Zareparsi, Anand Swaroop, Mohammad I. Othman, Sean P. MacNee, Jindan Yu, Shigeo Yoshida, Rafal Farjo, Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Molecular Vision. ,vol. 8, pp. 130- 137 ,(2002)
Cynthia A. Afshari, Pierre Bushel, M. Kathleen Kerr, Jeanelle Martinez, Nigel J. Walker, Lee Bennett, Gary A. Churchill, STATISTICAL ANALYSIS OF A GENE EXPRESSION MICROARRAY EXPERIMENT WITH REPLICATION ,(2002)
Russell D. Wolfinger, Greg Gibson, Elizabeth D. Wolfinger, Lee Bennett, Hisham Hamadeh, Pierre Bushel, Cynthia Afshari, Richard S. Paules, Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models Journal of Computational Biology. ,vol. 8, pp. 625- 637 ,(2001) , 10.1089/106652701753307520
Amir A. Jazaeri, Cindy J. Yee, Christos Sotiriou, Kelly R. Brantley, Jeff Boyd, Edison T. Liu, Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. Journal of the National Cancer Institute. ,vol. 94, pp. 990- 1000 ,(2002) , 10.1093/JNCI/94.13.990
J. David Barrans, Paul D. Allen, Dimitrios Stamatiou, Victor J. Dzau, Choong-Chin Liew, Global Gene Expression Profiling of End-Stage Dilated Cardiomyopathy Using a Human Cardiovascular-Based cDNA Microarray The American Journal of Pathology. ,vol. 160, pp. 2035- 2043 ,(2002) , 10.1016/S0002-9440(10)61153-4
Trey Ideker, Vesteinn Thorsson, Andrew F. Siegel, Leroy E. Hood, Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. Journal of Computational Biology. ,vol. 7, pp. 805- 817 ,(2000) , 10.1089/10665270050514945
HENRY SCHEFFE, The Analysis of Variance Soil Science. ,vol. 89, pp. 360- ,(1960) , 10.1097/00010694-196006000-00016
David M. Rocke, Blythe Durbin, A model for measurement error for gene expression arrays. Journal of Computational Biology. ,vol. 8, pp. 557- 569 ,(2001) , 10.1089/106652701753307485
Andrew B. Goryachev, Pascale F. Macgregor, Aled M. Edwards, Unfolding of Microarray Data Journal of Computational Biology. ,vol. 8, pp. 443- 461 ,(2001) , 10.1089/106652701752236232
Mei-Ling Ting Lee, Frank C Kuo, GA Whitmore, Jeffrey Sklar, Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 9834- 9839 ,(2000) , 10.1073/PNAS.97.18.9834