Cyclotomic Yokonuma–Hecke algebras are cyclotomic quiver Hecke algebras

作者: Salim Rostam

DOI: 10.1016/J.AIM.2017.03.004

关键词:

摘要: We prove that cyclotomic Yokonuma–Hecke algebras of type A are quiver Hecke and we give an explicit isomorphism with its inverse, using a similar result Brundan Kleshchev on algebras. The use is given by disjoint copies cyclic quivers. relate this work to Lusztig.

参考文章(36)
Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$ Journal of Mathematics of Kyoto University. ,vol. 36, pp. 789- 808 ,(1996) , 10.1215/KJM/1250518452
Nathaniel Thiem, Unipotent Hecke algebras of GLn(Fq) Journal of Algebra. ,vol. 284, pp. 559- 577 ,(2005) , 10.1016/J.JALGEBRA.2004.09.035
Andrew Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group American Mathematical Society. ,vol. 15, ,(1999) , 10.1090/ULECT/015
Meinolf Josef Geck, Goetz Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras ,(2000)
P. Shan, M. Varagnolo, E. Vasserot, On the center of quiver-Hecke algebras arXiv: Representation Theory. ,(2014) , 10.1215/00127094-3792705
Raphael Rouquier, 2-Kac-Moody algebras arXiv: Representation Theory. ,(2008)
Andrew Mathas, Cyclotomic quiver Hecke algebras of type A arXiv: Representation Theory. ,(2013)
Raphaël Rouquier, Peng Shan, Michela Varagnolo, Eric Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras Inventiones mathematicae. ,vol. 204, pp. 671- 786 ,(2016) , 10.1007/S00222-015-0623-7
Weideng Cui, Jinkui Wan, Modular representations and branching rules for affine and cyclotomic Yokonuma-Hecke algebras arXiv: Representation Theory. ,(2015)
Raphaël Rouquier, Gunter Malle, Michel Broué, Complex reflection groups, braid groups, Hecke algebras Crelle's Journal. ,vol. 1998, pp. 127- 190 ,(1998) , 10.1515/CRLL.1998.064