Weighted Norm Estimates for Singular Integrals with LlogL Kernels: Regularity of Weak Solutions of Some Degenerate Quasilinear Equations

作者: Richard L. Wheeden

DOI: 10.1007/978-3-319-10545-1_16

关键词:

摘要: The purpose of this paper is to summarize some known results about two different types problems. A number open questions related each the problems are indicated. presentation largely descriptive; no proofs given, but they can be found in appropriate papers listed among references.

参考文章(25)
A. Cordoba, C. Fefferman, A weighted norm inequality for singular integrals Studia Mathematica. ,vol. 57, pp. 97- 101 ,(1976) , 10.4064/SM-57-1-97-101
Calixto Calderón, Differentiation through starlike sets in $R^{m}$ Studia Mathematica. ,vol. 48, pp. 1- 13 ,(1973) , 10.4064/SM-48-1-1-13
Sagun Chanillo, David Watson, Richard Wheeden, Some integral and maximal operators related to starlike sets Studia Mathematica. ,vol. 107, pp. 223- 255 ,(1993) , 10.4064/SM-107-3-223-255
D. Stroock, S. Kusuoka, Applications of the Malliavin calculus. II Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. ,vol. 32, pp. 1- 76 ,(1985)
David K. Watson, Weighted estimates for singular integrals via Fourier transform estimates Duke Mathematical Journal. ,vol. 60, pp. 389- 399 ,(1990) , 10.1215/S0012-7094-90-06015-6
David K. Watson, Richard L. Wheeden, Norm estimates and representations for Calderon-Zygmund operators using averages over starlike sets Transactions of the American Mathematical Society. ,vol. 351, pp. 4127- 4171 ,(1999) , 10.1090/S0002-9947-99-02313-2
Cristian Rios, Eric T. Sawyer, Richard L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations Advances in Mathematics. ,vol. 193, pp. 373- 415 ,(2005) , 10.1016/J.AIM.2004.05.009
David K. Watson, Richard L. Wheeden, Averages over starlike sets, starlike maximal functions, and homogeneous singular integrals Transactions of the American Mathematical Society. ,vol. 363, pp. 5179- 5206 ,(2011) , 10.1090/S0002-9947-2011-05135-4