Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains

作者: Vaishak Belle

DOI: 10.1007/978-3-030-58449-8_1

关键词:

摘要: … -over areas such as statistical relational learning, neuro-symbolic systems, and high-level … Analogously, the automated construction of relational and statistical knowledge bases [18, …

参考文章(101)
Adnan Darwiche, New advances in compiling CNF to Decomposable Negation Normal form european conference on artificial intelligence. pp. 318- 322 ,(2004)
Eugenia Ternovska, David G. Mitchell, A framework for representing and solving NP search problems national conference on artificial intelligence. pp. 430- 435 ,(2005)
David Poole, First-order probabilistic inference international joint conference on artificial intelligence. pp. 985- 991 ,(2003)
Yongmei Liu, Hector J. Levesque, Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions international joint conference on artificial intelligence. pp. 522- 527 ,(2005)
Bhaskara Marthi, Brian Milch, Daniel L. Ong, Andrey Kolobov, Stuart J. Russell, David A. Sontag, Approximate inference for infinite contingent Bayesian networks international conference on artificial intelligence and statistics. pp. 238- 245 ,(2005)
Jason Eisner, Nathaniel W. Filardo, Dyna: extending datalog for modern AI international conference on datalog in academia and industry. pp. 181- 220 ,(2010) , 10.1007/978-3-642-24206-9_11
Feng Niu, Ce Zhang, Christopher Ré, Jude W Shavlik, None, DeepDive: Web-scale Knowledge-base Construction using Statistical Learning and Inference VLDS. pp. 25- 28 ,(2012)
Luc De Raedt, Angelika Kimmig, Probabilistic (logic) programming concepts Machine Learning. ,vol. 100, pp. 5- 47 ,(2015) , 10.1007/S10994-015-5494-Z
Clark Barrett, Roberto Sebastiani, Sanjit A Seshia, Cesare Tinelli, Satisfiability Modulo Theories Handbook of Satisfiability. pp. 305- 343 ,(2018) , 10.1007/978-3-319-10575-8_11
Avi Pfeffer, Daphne Koller, Alon Levy, P-CLASSIC: a tractable probablistic description logic national conference on artificial intelligence. pp. 390- 397 ,(1997)