Shape-Preserving Prediction for Stationary Functional Time Series

作者: Hernando Ombao , Shuhao Jiao

DOI:

关键词:

摘要: This article presents a novel method for prediction of stationary functional time series, trajectories sharing similar pattern with phase variability. Existing methodologies series only consider amplitude To overcome this limitation, we develop that incorporates One major advantage our proposed is the ability to preserve by treating as shape objects defined in quotient space respect warping and jointly modeling estimating Moreover, does not involve unnatural transformations can be easily implemented using existing software. The asymptotic properties least squares estimator are studied. effectiveness illustrated simulation study real data analysis on annual ocean surface temperatures. It shown SP (shape-preserving) captures common better than method, while providing competitive accuracy.

参考文章(21)
Lyndia C. Brumback, Mary J. Lindstrom, Self Modeling with Flexible, Random Time Transformations Biometrics. ,vol. 60, pp. 461- 470 ,(2004) , 10.1111/J.0006-341X.2004.00191.X
Jun Shao, Linear Model Selection by Cross-validation Journal of the American Statistical Association. ,vol. 88, pp. 486- 494 ,(1993) , 10.1080/01621459.1993.10476299
Adriaan P. Van Der Plas, On the Estimation of the Parameters of Markov Probability Models Using Macro Data Annals of Statistics. ,vol. 11, pp. 78- 85 ,(1983) , 10.1214/AOS/1176346058
V. Kargin, A. Onatski, Curve forecasting by functional autoregression Journal of Multivariate Analysis. ,vol. 99, pp. 2508- 2526 ,(2008) , 10.1016/J.JMVA.2008.03.001
D. Gervini, Warped functional regression Biometrika. ,vol. 102, pp. 1- 14 ,(2015) , 10.1093/BIOMET/ASU054
Ming-yen Cheng, Hau-tieng Wu, Local Linear Regression on Manifolds and Its Geometric Interpretation Journal of the American Statistical Association. ,vol. 108, pp. 1421- 1434 ,(2013) , 10.1080/01621459.2013.827984
Anestis Antoniadis, Efstathios Paparoditis, Theofanis Sapatinas, A functional wavelet–kernel approach for time series prediction Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 68, pp. 837- 857 ,(2006) , 10.1111/J.1467-9868.2006.00569.X
Galin L. Jones, On the Markov chain central limit theorem Probability Surveys. ,vol. 1, pp. 299- 320 ,(2004) , 10.1214/154957804100000051
Kurt Hornik, Ingo Feinerer, Martin Kober, Christian Buchta, Sphericalk-Means Clustering Journal of Statistical Software. ,vol. 50, pp. 1- 22 ,(2012) , 10.18637/JSS.V050.I10