Data-driven prognostic method based on self-supervised learning approaches for fault detection

作者: Tian Wang , Meina Qiao , Mengyi Zhang , Yi Yang , Hichem Snoussi

DOI: 10.1007/S10845-018-1431-X

关键词:

摘要: … fault detection problem by a self-supervised learning method, which is a novel method in fault detection … of the data which is easily obtained for self-supervised learning, the high-level …

参考文章(38)
Pedro Santos, Jesús Maudes, Andres Bustillo, Identifying maximum imbalance in datasets for fault diagnosis of gearboxes Journal of Intelligent Manufacturing. ,vol. 29, pp. 333- 351 ,(2018) , 10.1007/S10845-015-1110-0
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
A. Thieullen, M. Ouladsine, J. Pinaton, A Survey of Health Indicators and Data-Driven Prognosis in Semiconductor Manufacturing Process IFAC Proceedings Volumes. ,vol. 45, pp. 19- 24 ,(2012) , 10.3182/20120829-3-MX-2028.00246
Sankar Mahadevan, Sirish L. Shah, Fault detection and diagnosis in process data using one-class support vector machines Journal of Process Control. ,vol. 19, pp. 1627- 1639 ,(2009) , 10.1016/J.JPROCONT.2009.07.011
Ridha Ziani, Ahmed Felkaoui, Rabah Zegadi, Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher's criterion Journal of Intelligent Manufacturing. ,vol. 28, pp. 405- 417 ,(2017) , 10.1007/S10845-014-0987-3
Shu Wang, Yu-Qing Chang, Zhen Zhao, Fu-Li Wang, Multi-phase MPCA modeling and application based on an improved phase separation method International Journal of Control, Automation and Systems. ,vol. 10, pp. 1136- 1145 ,(2012) , 10.1007/S12555-012-0608-X
Yuan Li, Xinmin Zhang, Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection Chemometrics and Intelligent Laboratory Systems. ,vol. 136, pp. 47- 57 ,(2014) , 10.1016/J.CHEMOLAB.2014.05.003
A. Mosallam, K. Medjaher, N. Zerhouni, Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction Journal of Intelligent Manufacturing. ,vol. 27, pp. 1037- 1048 ,(2016) , 10.1007/S10845-014-0933-4
Ke Chang Fu, Zhu Ming, Peng Liu, Guo Jiang Wang, Incremental Fault Diagnosis for Nonlinear Processes Advanced Materials Research. ,vol. 433-440, pp. 6430- 6436 ,(2012) , 10.4028/WWW.SCIENTIFIC.NET/AMR.433-440.6430