Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics

作者: P. V. Rao , Eugene F. Schuster , Ramon C. Littell

DOI: 10.1214/AOS/1176343187

关键词:

摘要: … 3 the results of the two-sample problem are used to define point estimators and confidence intervals in the corresponding one-sample problem of estimating the center of symmetry, 00, …

参考文章(10)
Galen R. Shorack, Functions of Order Statistics Annals of Mathematical Statistics. ,vol. 43, pp. 412- 427 ,(1972) , 10.1214/AOMS/1177692622
Calvin C. Butler, A Test for Symmetry Using the Sample Distribution Function Annals of Mathematical Statistics. ,vol. 40, pp. 2209- 2210 ,(1969) , 10.1214/AOMS/1177697302
Pranab Kumar Sen, Malay Ghosh, On Bounded Length Sequential Confidence Intervals Based on One-Sample Rank Order Statistics Annals of Mathematical Statistics. ,vol. 42, pp. 189- 203 ,(1971) , 10.1214/AOMS/1177693506
J. L. Doob, Heuristic Approach to the Kolmogorov-Smirnov Theorems Annals of Mathematical Statistics. ,vol. 20, pp. 393- 403 ,(1949) , 10.1214/AOMS/1177729991
R. R. Bahadur, A Note on Quantiles in Large Samples Annals of Mathematical Statistics. ,vol. 37, pp. 577- 580 ,(1966) , 10.1214/AOMS/1177699450
E. F. Schuster, J. A. Narvarte, A New Nonparametric Estimator of the Center of a Symmetric Distribution Annals of Statistics. ,vol. 1, pp. 1096- 1104 ,(1973) , 10.1214/AOS/1176342559
Shoutir Kishore Chatterjee, Pranab Kumar Sen, On Kolmogorov-Smirnov-type tests for symmetry Annals of the Institute of Statistical Mathematics. ,vol. 25, pp. 287- 299 ,(1973) , 10.1007/BF02479375
E. L. Lehmann, Nonparametric Confidence Intervals for a Shift Parameter Annals of Mathematical Statistics. ,vol. 34, pp. 459- 464 ,(1963) , 10.1007/978-1-4614-1412-4_41