Robust Estimation in Finite Populations I

作者: Richard M. Royall , Jay Herson

DOI: 10.1080/01621459.1973.10481440

关键词:

摘要: Abstract This is an application of a least-squares prediction approach to finite population sampling theory. One way in which this differs from the conventional one its focus on characteristics particular samples rather than plans for choosing samples. Here we study many superpopulation models lead same optimal (BLU) estimator. Random considered light these results.

参考文章(18)
W. A. Ericson, Subjective Bayesian Models in Sampling Finite Populations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 31, pp. 195- 224 ,(1969) , 10.1111/J.2517-6161.1969.TB00782.X
P. G. Hoel, A. Levine, Optimal Spacing and Weighting in Polynomial Prediction Annals of Mathematical Statistics. ,vol. 35, pp. 1553- 1560 ,(1964) , 10.1214/AOMS/1177700379
Richard Royall, An Old Approach to Finite Population Sampling Theory Journal of the American Statistical Association. ,vol. 63, pp. 1269- 1279 ,(1968) , 10.1080/01621459.1968.10480926
Stephen M. Stigler, Optimal Experimental Design for Polynomial Regression Journal of the American Statistical Association. ,vol. 66, pp. 311- 318 ,(1971) , 10.1080/01621459.1971.10482260
Richard M. Royall, Jay Herson, Robust Estimation in Finite Populations II: Stratification on a Size Variable Journal of the American Statistical Association. ,vol. 68, pp. 890- 893 ,(1973) , 10.1080/01621459.1973.10481441
J. Kiefer, J. Wolfowitz, Optimum Designs in Regression Problems Annals of Mathematical Statistics. ,vol. 30, pp. 271- 294 ,(1959) , 10.1214/AOMS/1177706252
Jerome Cornfield, The University Group Diabetes Program JAMA. ,vol. 217, pp. 1676- 1687 ,(1971) , 10.1001/JAMA.1971.03190120044009