Critical Attractive Spin Systems

作者: Carol Bezuidenhout , Lawrence Gray

DOI: 10.1214/AOP/1176988599

关键词:

摘要: We study a class of attractive spin systems. prove that for these processes the system dies out when parameters are on critical surface. also supercritical process survives with positive probability in sufficiently thick space-time «slab»

参考文章(10)
Richard Durrett, Lecture notes on particle systems and percolation Wadsworth & Brooks/Cole. ,(1988)
P.D. Seymour, D.J.A. Welsh, Percolation probabilities on the square lattice Annals of discrete mathematics. ,vol. 3, pp. 227- 245 ,(1978) , 10.1016/S0167-5060(08)70509-0
Lucio Russo, A Note on Percolation Probability Theory and Related Fields. ,vol. 43, pp. 39- 48 ,(1978) , 10.1007/BF00535274
Carol Bezuidenhout, Geoffrey Grimmett, The Critical Contact Process Dies Out Annals of Probability. ,vol. 18, pp. 1462- 1482 ,(1990) , 10.1214/AOP/1176990627
David J. Barsky, Geoffrey R. Grimmett, Charles M. Newman, Percolation in half-spaces: equality of critical densities and continuity of the percolation probability Probability Theory and Related Fields. ,vol. 90, pp. 111- 148 ,(1991) , 10.1007/BF01321136
The supercritical phase of percolation is well behaved Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 430, pp. 439- 457 ,(1990) , 10.1098/RSPA.1990.0100
Lawrence Gray, David Griffeath, A Stability Criterion for Attractive Nearest Neighbor Spin Systems on $\mathbb{Z}$ Annals of Probability. ,vol. 10, pp. 67- 85 ,(1982) , 10.1214/AOP/1176993914
T. E. Harris, A lower bound for the critical probability in a certain percolation process Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 56, pp. 13- 20 ,(1960) , 10.1017/S0305004100034241
C. M. Fortuin, P. W. Kasteleyn, J. Ginibre, Correlation inequalities on some partially ordered sets Communications in Mathematical Physics. ,vol. 22, pp. 89- 103 ,(1971) , 10.1007/BF01651330