A study on universal Gaussian basis sets for first-row atoms

作者: Paul G. Mezey

DOI: 10.1007/BF00548831

关键词:

摘要: Analysis of various optimum and non-optimum Gaussian basis sets for firstrow elements have indicated that with a minimum increase the set size without loss accuracy calculated total energy, single “universal” may replace individually optimized series atoms. Such universal substantially reduce computational work required calculation molecular integrals in ab initio MO calculations.

参考文章(7)
David M. Silver, W.C. Nieuwpoort, UNIVERSAL ATOMIC BASIS SETS Chemical Physics Letters. ,vol. 57, pp. 421- 422 ,(1978) , 10.1016/0009-2614(78)85539-0
Paul G. Mezey, Roy E. Kari, Imre G. Csizmadia, Uniform quality Gaussian basis sets The Journal of Chemical Physics. ,vol. 66, pp. 964- 969 ,(1977) , 10.1063/1.434005
John D. Goddard, Imre G. Csizmadia, Paul G. Mezey, Roy E. Kari, The effects of optimization and scaling of AO exponents on molecular properties The Journal of Chemical Physics. ,vol. 66, pp. 3545- 3549 ,(1977) , 10.1063/1.434387
Paul G. Mezey, A gaussian exponent rule: Z-dependence of optimum gaussian orbital exponents Chemical Physics Letters. ,vol. 58, pp. 431- 434 ,(1978) , 10.1016/0009-2614(78)85068-4
Richard C. Raffenetti, Even‐tempered atomic orbitals. II. Atomic SCF wavefunctions in terms of even‐tempered exponential bases Journal of Chemical Physics. ,vol. 59, pp. 5936- 5949 ,(1973) , 10.1063/1.1679962
Paul G. Mezey, I. G. Csizmadia, Roy E. Kari, Uniform quality Gaussian basis sets. II. Multiple optima of small Gaussian basis sets for first row elements Journal of Chemical Physics. ,vol. 67, pp. 2927- 2928 ,(1977) , 10.1063/1.435198
Paul G. Mezey, Imre G. Csizmadia, Uniform quality constrained gaussian basis sets Canadian Journal of Chemistry. ,vol. 55, pp. 1181- 1192 ,(1977) , 10.1139/V77-165