Incremental Construction of Topic Hierarchies using Hierarchical Term Clustering.

作者: Ricardo Marcondes Marcacini , Solange Oliveira Rezende

DOI:

关键词:

摘要:

参考文章(12)
Ramakrishnan Srikant, Rakesh Agrawal, Fast algorithms for mining association rules very large data bases. pp. 580- 592 ,(1998)
Benjamin C. M. Fung, Martin Ester, Ke Wang, Hierarchical Document Clustering Using Frequent Itemsets siam international conference on data mining. pp. 59- 70 ,(2003)
Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi, Efficient Computation of Frequent and Top-k Elements in Data Streams Database Theory - ICDT 2005. pp. 398- 412 ,(2004) , 10.1007/978-3-540-30570-5_27
Ronen Feldman, Moshe Fresko, Yakkov Kinar, Yehuda Lindell, Orly Liphstat, Martin Rajman, Yonatan Schler, Oren Zamir, Text mining at the term level Principles of Data Mining and Knowledge Discovery. pp. 65- 73 ,(1998) , 10.1007/BFB0094806
Ying Zhao, George Karypis, Evaluation of hierarchical clustering algorithms for document datasets conference on information and knowledge management. pp. 515- 524 ,(2002) , 10.1145/584792.584877
Yanjun Li, Soon M. Chung, John D. Holt, Text document clustering based on frequent word meaning sequences data and knowledge engineering. ,vol. 64, pp. 381- 404 ,(2008) , 10.1016/J.DATAK.2007.08.001
Bernat Corominas-Murtra, Luc Steels, Sergi Valverde, Ricard V. Solé, Language networks: Their structure, function, and evolution Complexity. ,vol. 15, pp. 20- 26 ,(2010) , 10.1002/CPLX.V15:6
Bjornar Larsen, Chinatsu Aone, None, Fast and effective text mining using linear-time document clustering knowledge discovery and data mining. pp. 16- 22 ,(1999) , 10.1145/312129.312186