Digital CMOS neuromorphic processor design featuring unsupervised online learning

作者: Jae-sun Seo , Mingoo Seok

DOI: 10.1109/VLSI-SOC.2015.7314390

关键词:

摘要: The compute-intensive and power-efficient brain has been a source of inspiration for a broad range of neural networks to solve recognition and classification tasks. Compared to …

参考文章(19)
Sen Song, Kenneth D. Miller, L. F. Abbott, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nature Neuroscience. ,vol. 3, pp. 919- 926 ,(2000) , 10.1038/78829
Jung Kuk Kim, Phil Knag, Thomas Chen, Zhengya Zhang, A 640M pixel/s 3.65mW sparse event-driven neuromorphic object recognition processor with on-chip learning symposium on vlsi circuits. pp. 50- ,(2015) , 10.1109/VLSIC.2015.7231323
Peter U. Diehl, Matthew Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience. ,vol. 9, pp. 99- 99 ,(2015) , 10.3389/FNCOM.2015.00099
Beinuo Zhang, Zhewei Jiang, Qi Wang, Jae-Sun Seo, Mingoo Seok, A neuromorphic neural spike clustering processor for deep-brain sensing and stimulation systems international symposium on low power electronics and design. pp. 91- 97 ,(2015) , 10.1109/ISLPED.2015.7273496
Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, Anand Raghunathan, AxNN: energy-efficient neuromorphic systems using approximate computing international symposium on low power electronics and design. pp. 27- 32 ,(2014) , 10.1145/2627369.2627613
Daniel E. Feldman, The spike-timing dependence of plasticity. Neuron. ,vol. 75, pp. 556- 571 ,(2012) , 10.1016/J.NEURON.2012.08.001
G. Rachmuth, H. Z. Shouval, M. F. Bear, C.-S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 19453- 19454 ,(2011) , 10.1073/PNAS.1106161108
Friedemann Zenke, Everton J. Agnes, Wulfram Gerstner, Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks Nature Communications. ,vol. 6, pp. 6922- 6922 ,(2015) , 10.1038/NCOMMS7922
Phil Knag, Jung Kuk Kim, Thomas Chen, Zhengya Zhang, A Sparse Coding Neural Network ASIC With On-Chip Learning for Feature Extraction and Encoding IEEE Journal of Solid-state Circuits. ,vol. 50, pp. 1070- 1079 ,(2015) , 10.1109/JSSC.2014.2386892
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)