Privacy-preserving aggregation of Time-series data

作者: Richard Chow , Tsz Hong Hubert Chan , Runting Shi

DOI:

关键词:

摘要: A private stream aggregation (PSA) system contributes a user's data to aggregator without compromising the privacy. The can begin by determining (302) key for local user in set of users, wherein sum keys associated with users and is equal zero. also selects values user. Then, encrypts individual based part on produce encrypted values, thereby allowing decrypt an aggregate value across decrypting interacting while value. sends (308) aggregator.

参考文章(33)
Elias Leake Quinn, Privacy and the New Energy Infrastructure Social Science Research Network. ,(2009) , 10.2139/SSRN.1370731
Ilya Mironov, Omkant Pandey, Omer Reingold, Salil Vadhan, Computational Differential Privacy international cryptology conference. pp. 126- 142 ,(2009) , 10.1007/978-3-642-03356-8_8
Adam J. Lee, William van Melle, Jacob T. Biehl, Eleanor Gilbert Rieffel, Secured histories: computing group statistics on encrypted data while preserving individual privacy arXiv: Cryptography and Security. ,(2010)
Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, Moni Naor, Our Data, Ourselves: Privacy Via Distributed Noise Generation Advances in Cryptology - EUROCRYPT 2006. ,vol. 4004, pp. 486- 503 ,(2006) , 10.1007/11761679_29
Suman Nath, Vibhor Rastogi, Private Aggregation of Distributed Time-Series Data ,(2010)
Shantanu Rane, Manas A. Pathak, Bhiksha Ramakrishnan, Differentially private aggregate classifier for multiple databases ,(2010)
Alfred J Menezes, Paul C van Oorschot, Scott A Vanstone, Handbook of Applied Cryptography ,(1996)
Dan Boneh, Eu-Jin Goh, Kobbi Nissim, Evaluating 2-DNF Formulas on Ciphertexts Theory of Cryptography. pp. 325- 341 ,(2005) , 10.1007/978-3-540-30576-7_18