THE USE OF SPECTRAL METHODS IN PREDICTING THE REFLECTION AND TRANSMISSION OF ULTRASONIC SIGNALS THROUGH FLAWS

作者: W. Dauksher , A. F. Emery

DOI: 10.1007/978-1-4613-0383-1_4

关键词:

摘要: Finite difference solution of the wave equation will produce excellent results when numerical procedure employs time increments and spatial discretization resulting in a Courant number 1 for all elements. This ideal situation is difficult to achieve with reasonable mesh density modeling requires: 1) non-uniform grid discretization, 2) different materials or 3) more than one dimension.

参考文章(11)
Anthony T Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion Journal of Computational Physics. ,vol. 54, pp. 468- 488 ,(1984) , 10.1016/0021-9991(84)90128-1
M. A. Dablain, The application of high-order differencing to the scalar wave equation Geophysics. ,vol. 51, pp. 54- 66 ,(1986) , 10.1190/1.1442040
J. Altenbach, Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw-Hill Book Company (UK) Limited. 1977. XV, 787 S. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 60, pp. 345- 346 ,(1980) , 10.1002/ZAMM.19800600811
Lloyd N. Trefethen, Group velocity in finite difference schemes Siam Review. ,vol. 24, pp. 113- 136 ,(1981) , 10.1137/1024038
Ogierd Cecil Zienkiewicz, The finite element method London: McGraw-Hill. ,(1989)
M. Y. Hussaini, T. A. Zang, Spectral Methods in Fluid Dynamics ,(1987)
R. M. Alford, K. R. Kelly, D. M. Boore, Accuracy of finite-difference modeling of the acoustic wave equation Geophysics. ,vol. 39, pp. 834- 842 ,(1974) , 10.1190/1.1440470
Eitan Tadmor, Claudio Canuto, M. Youssuff Hussaini, Alfio Quarteroni, Thomas Zang, Spectral Methods in Fluid Dynamics. Mathematics of Computation. ,vol. 57, pp. 876- ,(1991) , 10.2307/2938729