Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii.

作者: Daniel E. Voth , Robert A. Heinzen

DOI: 10.1111/J.1462-5822.2007.00901.X

关键词:

摘要: Summary Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not case Q fever bacterium, Coxiella burnetii. This hardy, obligate pathogen has evolved only survive, but thrive, in harshest compartments: phagolysosome. Following internalization, nascent phagosome ultimately develops into large and spacious parasitophorous vacuole (PV) acquires lysosomal characteristics such as acidic pH, acid hydrolases cationic peptides, defences designed rid host intruders. transit environment initially stalled, process apparently modulated by interactions with autophagic pathway. actively participates its PV synthesizing proteins mediate stalling, interactions, development maintenance mature vacuole. Among potential mediating these processes deployment type IV secretion system deliver effector cytosol. Here we summarize our current understanding cellular events occur during parasitism cells Coxiella.

参考文章(112)
T Hackstadt, M G Peacock, P J Hitchcock, R L Cole, Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infection and Immunity. ,vol. 48, pp. 359- 365 ,(1985) , 10.1128/IAI.48.2.359-365.1985
E T Akporiaye, J D Rowatt, A A Aragon, O G Baca, Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infection and Immunity. ,vol. 40, pp. 1155- 1162 ,(1983) , 10.1128/IAI.40.3.1155-1162.1983
Dale Howe, Jana Melnicakova, Imrich Barak, Robert A. Heinzen, Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cellular Microbiology. ,vol. 5, pp. 469- 480 ,(2003) , 10.1046/J.1462-5822.2003.00293.X
Robert A Heinzen, Ted Hackstadt, James E Samuel, Developmental biology of Coxiella burnetii Trends in Microbiology. ,vol. 7, pp. 149- 154 ,(1999) , 10.1016/S0966-842X(99)01475-4
M RABINOVITCH, P TAVARESVERAS, Cohabitation of Leishmania amazonensis and Coxiella burnetii Trends in Microbiology. ,vol. 4, pp. 158- 161 ,(1996) , 10.1016/0966-842X(96)10027-5
Masako Andoh, Takashi Naganawa, Akitoyo Hotta, Tsuyoshi Yamaguchi, Hideto Fukushi, Toshiaki Masegi, Katsuya Hirai, SCID mouse model for lethal Q fever. Infection and Immunity. ,vol. 71, pp. 4717- 4723 ,(2003) , 10.1128/IAI.71.8.4717-4723.2003
M. J. ROMAN, P. D. CORIZ, O. G. BACA, A Proposed Model to Explain Persistent Infection of Host Cells with Coxiella burnetii Microbiology. ,vol. 132, pp. 1415- 1422 ,(1986) , 10.1099/00221287-132-5-1415
V. Roux, M. Bergoin, N. Lamaze, D. Raoult, Reassessment of the taxonomic position of Rickettsiella grylli. International Journal of Systematic and Evolutionary Microbiology. ,vol. 47, pp. 1255- 1257 ,(1997) , 10.1099/00207713-47-4-1255
Amy M. Denison, Robert F. Massung, Herbert A. Thompson, Analysis of the O-antigen biosynthesis regions of phase II Isolates of Coxiella burnetii Fems Microbiology Letters. ,vol. 267, pp. 102- 107 ,(2007) , 10.1111/J.1574-6968.2006.00544.X