作者: P. M. Kareiva , N. Shigesada
DOI: 10.1007/BF00379695
关键词:
摘要: This paper develops a procedure for quantifying movement sequences in terms of move length and turning angle probability distributions. By assuming that is correlated random walk, we derive formula relates expected square displacements to the number consecutive moves. We show this displacement can be used highlight consequences different searching behaviors (i.e. distributions angles or lengths). Observations Pieris rapae (cabbage white butterfly) flight Battus philenor (pipe-vine swallowtail) crawling are analyzed as walk. The aptly predicts net ovipositing cabbage butterflies. In other circumstances, however, not well-described by our walk formula; these examples must represent more complicated process than simple suggest progress might made analyzing cases higher order markov processes.