Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI.

作者: Panu T. Vesanen , Koos C.J. Zevenhoven , Jaakko O. Nieminen , Juhani Dabek , Lauri T. Parkkonen

DOI: 10.1016/J.JMR.2013.07.009

关键词:

摘要: Ultra-low-field MRI is an emerging technology that allows and NMR measurements in microtesla-range fields. In this work, the possibilities of relaxation-based temperature with ultra-low-field were investigated by measuring T1 T2 relaxation times agarose gel at 50 μT-52 mT temperatures 5-45°C. Measurements a 3T scanner made for comparison. The Bloembergen-Purcell-Pound theory was combined two-state model to explain field-strength dependence data. results show dependencies microtesla range differ drastically from those 3T; effect on reversed approximately 5 mT. obtained used reconstruct maps scans. These time-dependent measured phantom μT reproduced gradient good contrast.

参考文章(37)
Anatole Abragam, Principles of Nuclear Magnetism ,(1993)
S H Koenig, W E Schillinger, Nuclear magnetic relaxation dispersion in protein solutions. I. Apotransferrin. Journal of Biological Chemistry. ,vol. 244, pp. 3283- 3289 ,(1969) , 10.1016/S0021-9258(18)93126-1
S Ablett, P.J Lillford, S.M.A Baghdadi, W Derbyshire, Nuclear magnetic resonance investigations of polysaccharide films, sols, and gels Journal of Colloid and Interface Science. ,vol. 67, pp. 355- 377 ,(1978) , 10.1016/0021-9797(78)90020-6
Panu T. Vesanen, Jaakko O. Nieminen, Koos C. J. Zevenhoven, Juhani Dabek, Lauri T. Parkkonen, Andrey V. Zhdanov, Juho Luomahaara, Juha Hassel, Jari Penttilä, Juha Simola, Antti I. Ahonen, Jyrki P. Mäkelä, Risto J. Ilmoniemi, Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer Magnetic Resonance in Medicine. ,vol. 69, pp. 1795- 1804 ,(2013) , 10.1002/MRM.24413
W. Derbyshire, I. D. Duff, N.m.r. of agarose gels Faraday Discussions of The Chemical Society. ,vol. 57, pp. 243- 254 ,(1974) , 10.1039/DC9745700243
J. C. Hindman, Proton Resonance Shift of Water in the Gas and Liquid States The Journal of Chemical Physics. ,vol. 44, pp. 4582- 4592 ,(1966) , 10.1063/1.1726676
T.R. Nelson, S.M. Tung, Temperature dependence of proton relaxation times in vitro. Magnetic Resonance Imaging. ,vol. 5, pp. 189- 199 ,(1987) , 10.1016/0730-725X(87)90020-8
R. Ruan, P. Chen, K. Chang, H.-J. Kim, I.A. Taub, Rapid Food Particle Temperature Mapping During Ohmic Heating Using FLASH MRI Journal of Food Science. ,vol. 64, pp. 1024- 1026 ,(1999) , 10.1111/J.1365-2621.1999.TB12273.X
V. Graf, F. Noack, G. J. Béné, Proton spin T1 relaxation dispersion in liquid H2O by slow proton‐exchange Journal of Chemical Physics. ,vol. 72, pp. 861- 863 ,(1980) , 10.1063/1.439240
M. Espy, P. Magnelind, A. Matlashov, S. Newman, A. Urbaitis, P. Volegov, Toward High Resolution Images With SQUID-Based Ultra-Low Field Magnetic Resonance Imaging IEEE Transactions on Applied Superconductivity. ,vol. 23, pp. 1603107- 1603107 ,(2013) , 10.1109/TASC.2013.2246751