A general iterative method for nonexpansive mappings in Hilbert spaces

作者: Giuseppe Marino , Hong-Kun Xu

DOI: 10.1016/J.JMAA.2005.05.028

关键词:

摘要: Let H be a real Hilbert space. Consider on nonexpansive mapping T with fixed point, contraction f coefficient 0 0. <γ <¯

参考文章(8)
H.K. Xu, An Iterative Approach to Quadratic Optimization Journal of Optimization Theory and Applications. ,vol. 116, pp. 659- 678 ,(2003) , 10.1023/A:1023073621589
I. Yamada, F. Deutsch, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings Numerical Functional Analysis and Optimization. ,vol. 19, pp. 33- 56 ,(1998)
W. A. Kirk, Kazimierz Goebel, Topics in metric fixed point theory ,(1990)
Isao Yamada, Nobuhiko Ogura, Kohichi Sakaniwa, Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space Numerical Functional Analysis and Optimization. ,vol. 19, pp. 165- 190 ,(1998) , 10.1080/01630569808816822
Hong-Kun Xu, VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE MAPPINGS Journal of Mathematical Analysis and Applications. ,vol. 298, pp. 279- 291 ,(2004) , 10.1016/J.JMAA.2004.04.059
A. Moudafi, Viscosity Approximation Methods for Fixed-Points Problems Journal of Mathematical Analysis and Applications. ,vol. 241, pp. 46- 55 ,(2000) , 10.1006/JMAA.1999.6615
Hong-Kun Xu, Iterative Algorithms for Nonlinear Operators Journal of The London Mathematical Society-second Series. ,vol. 66, pp. 240- 256 ,(2002) , 10.1112/S0024610702003332