Estimation of BOD parameters by an integral method

作者: A.R. Bowers , R. Robinson , A.D. Koussis

DOI: 10.1080/09593338709384491

关键词:

摘要: Abstract A new method for estimating the ultimate BOD (Lo) and first‐order rate coefficient (k) has been developed. The uses integral of BOD‐exerted curve rather than its slope, is, therefore, efficient robust. accuracy is superior to that traditional techniques, producing results comparable Reed‐Theriault non‐linear least squares technique. In addition, no restriction on range input data handles lag periods in exertion without difficulty.

参考文章(12)
W. Wesley Eckenfelder, Principles of Water Quality Management ,(1979)
E. W. Steel, Terence J. McGhee, Water Supply and Sewerage ,(1960)
Mark J. Hammer, Water and Wastewater Technology ,(1986)
James C. Young, John W. Clark, Second Order Equation for BOD Journal of the Sanitary Engineering Division. ,vol. 91, pp. 43- 58 ,(1965) , 10.1061/JSEDAI.0000532
Clarence J. Velz, Applied Stream Sanitation ,(1970)
Thomas O. Barnwell, Least Squares Estimates of BOD Parameters Journal of the Environmental Engineering Division. ,vol. 106, pp. 1197- 1202 ,(1980) , 10.1061/JEEGAV.0001117
J HEWITT, J HUNTER, D LOCKWOOD, A multiorder approach to bod kinetics Water Research. ,vol. 13, pp. 325- 329 ,(1979) , 10.1016/0043-1354(79)90213-6
Roland Leduc, T.E. Unny, Edward A. McBean, Stochastic model of first-order bod kinetics Water Research. ,vol. 20, pp. 625- 632 ,(1986) , 10.1016/0043-1354(86)90027-8
John P. Hewitt, Joseph V. Hunter, A comparison of the methods used to calculate first order BOD equation constants Water Research. ,vol. 9, pp. 683- 687 ,(1975) , 10.1016/0043-1354(75)90177-3