L2 decay of the incompressible Navier-Stokes equations with damping

作者: Cai Xiaojing , Lei Lihua

DOI: 10.1016/S0252-9602(10)60120-8

关键词:

摘要: Abstract In this article, we show large time behavior of weak solutions to the Cauchy problem Navier-Stokes equations with damping α|u|β-1u (α > 0).

参考文章(19)
M. E. Schonbek, Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations Indiana University Mathematics Journal. ,vol. 41, pp. 809- 823 ,(1992)
Hyeong-Ohk Bae, Hi Jun Choe, Decay rate for the incompressible flows in half spaces Mathematische Zeitschrift. ,vol. 238, pp. 799- 816 ,(2001) , 10.1007/S002090100276
Maria Elena Schonbek, L2 decay for weak solutions of the Navier-Stokes equations Archive for Rational Mechanics and Analysis. ,vol. 88, pp. 209- 222 ,(1985) , 10.1007/BF00752111
Ryuji Kajikiya, Tetsuro Miyakawa, OnL 2 decay of weak solutions of the Navier-Stokes equations inR n Mathematische Zeitschrift. ,vol. 192, pp. 135- 148 ,(1986) , 10.1007/BF01162027
Didier Bresch, Benoît Desjardins, Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model Communications in Mathematical Physics. ,vol. 238, pp. 211- 223 ,(2003) , 10.1007/S00220-003-0859-8
Seiji Ukai, A solution formula for the Stokes equation in Rn Communications on Pure and Applied Mathematics. ,vol. 40, pp. 611- 621 ,(1987) , 10.1002/CPA.3160400506
L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations Communications on Pure and Applied Mathematics. ,vol. 35, pp. 771- 831 ,(1982) , 10.1002/CPA.3160350604
Jean Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace Acta Mathematica. ,vol. 63, pp. 193- 248 ,(1934) , 10.1007/BF02547354
Wolfgang Borchers, Tetsuro Miyakawa, L2 decay for the Navier-Stokes flow in halfspaces Mathematische Annalen. ,vol. 282, pp. 139- 155 ,(1988) , 10.1007/BF01457017