Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration during Processing

作者: Mochamad Asrofi , Hairul Abral , Anwar Kasim , Adjar Pratoto , Melbi Mahardika

DOI: 10.3390/FIB6020040

关键词:

摘要: Thermoplastic starch (TPS) reinforced by 1 wt % nanofiber cellulose (NFC) reinforcing from water hyacinth was produced. Ultrasonic vibration time (UVT) applied to bionanocomposites during gelation for 0, 15, 30 and 60 min. Morphology of the NFC investigated using Transmission Electron Microscopy (TEM). Scanning (SEM) tensile tests were performed identify fracture surface determine mechanical properties bionanocomposites, respectively. The Crystallinity index (CI) untreated treated measured X-ray Diffraction (XRD). average diameter 10–20 nm. maximum strength (TS) modulus elasticity (ME) bionanocomposite 11.4 MPa 443 respectively, after min UVT. This result supported SEM which indicated good dispersion compact structure.

参考文章(36)
Melissa B. Agustin, Bashir Ahmmad, Enna Richel P. De Leon, Jerico L. Buenaobra, Joel R. Salazar, Fumihiko Hirose, Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks Polymer Composites. ,vol. 34, pp. 1325- 1332 ,(2013) , 10.1002/PC.22546
William Neil Gilfillan, Lalehvash Moghaddam, William O. S. Doherty, Preparation and characterization of composites from starch with sugarcane bagasse nanofibres Cellulose. ,vol. 21, pp. 2695- 2712 ,(2014) , 10.1007/S10570-014-0277-4
Wenjian Cheng, Jianchu Chen, Donghong Liu, Xingqian Ye, Fansheng Ke, Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films Carbohydrate Polymers. ,vol. 81, pp. 707- 711 ,(2010) , 10.1016/J.CARBPOL.2010.03.043
A. Komuraiah, N. Shyam Kumar, B. Durga Prasad, Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties Mechanics of Composite Materials. ,vol. 50, pp. 359- 376 ,(2014) , 10.1007/S11029-014-9422-2
Eliangela de M. Teixeira, Daniel Pasquini, Antônio A.S. Curvelo, Elisângela Corradini, Mohamed N. Belgacem, Alain Dufresne, Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch Carbohydrate Polymers. ,vol. 78, pp. 422- 431 ,(2009) , 10.1016/J.CARBPOL.2009.04.034
E. Abraham, B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, R. Anandjiwala, Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach Carbohydrate Polymers. ,vol. 86, pp. 1468- 1475 ,(2011) , 10.1016/J.CARBPOL.2011.06.034
Bibin Mathew Cherian, Alcides Lopes Leão, Sivoney Ferreira de Souza, Sabu Thomas, Laly A. Pothan, M. Kottaisamy, Isolation of nanocellulose from pineapple leaf fibres by steam explosion Carbohydrate Polymers. ,vol. 81, pp. 720- 725 ,(2010) , 10.1016/J.CARBPOL.2010.03.046
A. K. Mohanty, M. Misra, L. T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: An overview Composite Interfaces. ,vol. 8, pp. 313- 343 ,(2001) , 10.1163/156855401753255422
S.H.D Hulleman, M.G Kalisvaart, F.H.P Janssen, H Feil, J.F.G Vliegenthart, Origins of B-type crystallinity in glycerol-plasticised, compression-moulded potato starches Carbohydrate Polymers. ,vol. 39, pp. 351- 360 ,(1999) , 10.1016/S0144-8617(99)00024-7
R.N Tharanathan, Biodegradable films and composite coatings: past, present and future Trends in Food Science and Technology. ,vol. 14, pp. 71- 78 ,(2003) , 10.1016/S0924-2244(02)00280-7