Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation

作者: Steven R. Pride , James G. Berryman

DOI: 10.1103/PHYSREVE.68.036603

关键词:

摘要: The equations governing the linear acoustics of composites with two isotropic porous constituents are derived from first principles using volume-averaging arguments. theory is designed for modeling acoustic propagation through heterogeneous structures. only restriction placed on geometry phases that overall composite remains isotropic. determines macroscopic fluid response in each phase addition to combined bulk grains and composite. complex frequency-dependent compressibility laws obtained allow transfer between constituents. Such mesoscopic transport within averaging volume provides a distinct attenuation mechanism losses associated net Darcy flux individual as quantified examples.

参考文章(32)
Konstadinos N. Moutsopoulos, Avraam A. Konstantinidis, Ioannis D. Meladiotis, Christos D. Tzimopoulos, Elias C. Aifantis, Hydraulic Behavior and Contaminant Transport in Multiple Porosity Media Transport in Porous Media. ,vol. 42, pp. 265- 292 ,(2001) , 10.1023/A:1006745924508
James G. Berryman, Graeme W. Milton, Exact results for generalized Gassmann's equations in composite porous media with two constituents Geophysics. ,vol. 56, pp. 1950- 1960 ,(1991) , 10.1190/1.1443006
M. Bai, D. Elsworth, J.-C. Roegiers, Modeling of naturally fractured reservoirs using deformation dependent flow mechanism International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. ,vol. 30, pp. 1185- 1191 ,(1993) , 10.1016/0148-9062(93)90092-R
Steven R. Pride, James G. Berryman, Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Physical Review E. ,vol. 68, pp. 036604- ,(2003) , 10.1103/PHYSREVE.68.036604
M. Y. Khaled, D. E. Beskos, E. C. Aifantis, On the theory of consolidation with double porosity—III A finite element formulation International Journal for Numerical and Analytical Methods in Geomechanics. ,vol. 8, pp. 101- 123 ,(1984) , 10.1002/NAG.1610080202
Andrew N. Norris, Low‐frequency dispersion and attenuation in partially saturated rocks Journal of the Acoustical Society of America. ,vol. 94, pp. 359- 370 ,(1993) , 10.1121/1.407101
Kagan Tuncay, M.Yavuz Corapcioglu, Wave propagation in fractured porous media Transport in Porous Media. ,vol. 23, pp. 237- 258 ,(1996) , 10.1007/BF00167098
Karsten Pruess, A PRACTICAL METHOD FOR MODELING FLUID AND HEAT FLOW IN FRACTURED POROUS MEDIA Society of Petroleum Engineers Journal. ,vol. 25, pp. 14- 26 ,(1985) , 10.2118/10509-PA
M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range The Journal of the Acoustical Society of America. ,vol. 28, pp. 168- 178 ,(1956) , 10.1121/1.1908239
S. R. de Groot, P. Mazur, Sangil Choi, Non-equilibrium thermodynamics, ,(1962)