Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time

作者: I. V. Oseledets , D. V. Savostianov , E. E. Tyrtyshnikov

DOI: 10.1137/060655894

关键词:

摘要: We consider Tucker-like approximations with an $r \times r r$ core tensor for three-dimensional $n n n$ arrays in the case of \ll and possibly very large $n$ (up to $10^4$-$10^6$). As approximation contains only $\mathcal{O}(rn + r^3)$ parameters, it is natural ask if can be computed using a small amount entries given array. A similar question matrices (two-dimensional tensors) was asked positively answered [S. A. Goreinov, E. Tyrtyshnikov, N. L. Zamarashkin, theory pseudo-skeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1-21]. In present paper we extend positive answer tensors. More specifically, shown that admits good Tucker some (small) rank $r$, then this $\mathcal{O}(nr)$ $\mathcal{O}(nr^{3})$ complexity.

参考文章(18)
Ledyard R Tucker, Some mathematical notes on three-mode factor analysis Psychometrika. ,vol. 31, pp. 279- 311 ,(1966) , 10.1007/BF02289464
Mario Bebendorf, Approximation of boundary element matrices Numerische Mathematik. ,vol. 86, pp. 565- 589 ,(2000) , 10.1007/PL00005410
E. Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method Computing. ,vol. 64, pp. 367- 380 ,(2000) , 10.1007/S006070070031
G. Beylkin, M. J. Mohlenkamp, Numerical operator calculus in higher dimensions Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 10246- 10251 ,(2002) , 10.1073/PNAS.112329799
Judith M Ford, Eugene E Tyrtyshnikov, None, Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear Systems SIAM Journal on Scientific Computing. ,vol. 25, pp. 961- 981 ,(2003) , 10.1137/S1064827503421689
Eugene Tyrtyshnikov, Kronecker-product approximations for some function-related matrices Linear Algebra and its Applications. ,vol. 379, pp. 423- 437 ,(2004) , 10.1016/J.LAA.2003.08.013
Eugene Tyrtyshnikov, Mosaic-Skeleton approximations Calcolo. ,vol. 33, pp. 47- 57 ,(1996) , 10.1007/BF02575706
Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, A Multilinear Singular Value Decomposition SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1253- 1278 ,(2000) , 10.1137/S0895479896305696
Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1324- 1342 ,(2000) , 10.1137/S0895479898346995