Improved Approximation Algorithms for Max-2SAT with Cardinality Constraint

作者: Markus Bläser , Bodo Manthey

DOI: 10.1007/3-540-36136-7_17

关键词:

摘要: The optimization problem Max-2SAT-CC is Max-2SAT with the additional cardinality constraint that value one may be assigned to at most K variables. We present an approximation algorithm polynomial running time for Max-2SAT-CC. This achieves, any ? > 0, ratio 6 + 3 e/16 2 e - 0.6603. Furthermore, we a greedy O(N log N) and 1/2. latter even works clauses of arbitrary length.

参考文章(13)
Alexander A. Ageev, Maxim I. Sviridenko, Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts integer programming and combinatorial optimization. pp. 17- 30 ,(1999) , 10.1007/3-540-48777-8_2
Takao Ono, Tomio Hirata, Takao Asano, Approximation algorithms for the maximum satisfiability problem Nordic Journal of Computing. ,vol. 3, pp. 388- 404 ,(1996)
Gerard Cornuejols, Marshall L. Fisher, George L. Nemhauser, Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms Management Science. ,vol. 23, pp. 789- 810 ,(1977) , 10.1287/MNSC.23.8.789
Johan Håstad, Some optimal inapproximability results Journal of the ACM. ,vol. 48, pp. 798- 859 ,(2001) , 10.1145/502090.502098
Michel X. Goemans, David P. Williamson, New ${\bf \frac{3}{4}}$-Approximation Algorithms for the Maximum Satisfiability Problem SIAM Journal on Discrete Mathematics. ,vol. 7, pp. 656- 666 ,(1994) , 10.1137/S0895480192243516
Takao Asano, David P. Williamson, Improved Approximation Algorithms for MAX SAT Journal of Algorithms. ,vol. 42, pp. 173- 202 ,(2002) , 10.1006/JAGM.2001.1202
Joel Spencer, The Probabilistic Method ,(1991)
Gerard Cornuejols, Marshall L. Fisher, George L. Nemhauser, Note—On “Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms” Management Science. ,vol. 25, pp. 808- 809 ,(1979) , 10.1287/MNSC.25.8.808
U. Feige, M. Goemans, Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT Proceedings Third Israel Symposium on the Theory of Computing and Systems. pp. 182- 189 ,(1995) , 10.1109/ISTCS.1995.377033
Uriel Feige, A threshold of ln n for approximating set cover Journal of the ACM. ,vol. 45, pp. 634- 652 ,(1998) , 10.1145/285055.285059