Optimality for ill-posed problems under general source conditions

作者: Ulrich Tautenhahn

DOI: 10.1080/01630569808816834

关键词:

摘要: In this paper we consider linear ill-posed problems where instead of y noisy data yδ are available with and is a operator between Hilbert spaces X Y. Assuming the general source condition appropriate functions φ study following questions:(i) which (best possible) accuracy can be obtained for identifying x from under assumptions (ii) there special regularization methods guarantee best possible accuracy, i.e., optimal on set Mδ,E? Concerning question (i) prove that certain conditions holds inf sup ‘inf’ taken over all 'sup' .and optimality class specify our results to Tikhonov type spectral methods. Heat equation backward in time characterized by different φ(λ) serve as model examples.

参考文章(17)
A. B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss-Newton method Computational Mathematics and Mathematical Physics. ,vol. 32, pp. 1353- 1359 ,(1992) , 10.5555/157916.157930
Martin Hanke, Per Christian Hansen, Regularization methods for large-scale problems ,(1993)
Thomas I. Seidman, “Optimal filtering” for some ill-posed problems Wave propagation and inversion. pp. 108- 123 ,(1992)
Alfred Karl Louis, Inverse und schlecht gestellte Probleme Vieweg+Teubner Verlag. ,(1989) , 10.1007/978-3-322-84808-6
U. Tautenhahn, T. Schröter, On Optimal Regularization Methods for the Backward Heat Equation Zeitschrift Fur Analysis Und Ihre Anwendungen. ,vol. 15, pp. 475- 493 ,(1996) , 10.4171/ZAA/711
Thomas I. Seidman, Optimal filtering for the backward heat equation SIAM Journal on Numerical Analysis. ,vol. 33, pp. 162- 170 ,(1996) , 10.1137/0733010