The distribution of the product of two triangular random variables

作者: Theodore S. Glickman , Feng Xu

DOI: 10.1016/J.SPL.2008.03.031

关键词:

摘要: Although computer simulation can be used to determine the distribution of product two triangularly distributed variables for a specific application, closed-form expression is preferable in general. Assuming independence, probability density function this derived.

参考文章(13)
Peter R. Nelson, The algebra of random variables ,(1979)
Robert Schmidt, Statistical Analysis of One-Dimensional Distributions Annals of Mathematical Statistics. ,vol. 5, pp. 30- 72 ,(1934) , 10.1214/AOMS/1177732734
M. D. Springer, W. E. Thompson, The Distribution of Products of Independent Random Variables SIAM Journal on Applied Mathematics. ,vol. 14, pp. 511- 526 ,(1966) , 10.1137/0114046
Samuel Kotz, R. Srinivasan, Distribution of product and quotient of Bessel function variates Annals of the Institute of Statistical Mathematics. ,vol. 21, pp. 201- 210 ,(1969) , 10.1007/BF02532244
M. D. Springer, W. E. Thompson, The Distribution of Products of Beta, Gamma and Gaussian Random Variables SIAM Journal on Applied Mathematics. ,vol. 18, pp. 721- 737 ,(1970) , 10.1137/0118065
Andrew G. Glen, Lawrence M. Leemis, John H. Drew, Computing the distribution of the product of two continuous random variables Computational Statistics & Data Analysis. ,vol. 44, pp. 451- 464 ,(2004) , 10.1016/S0167-9473(02)00234-7
D Johnson, Triangular approximations for continuous random variables in risk analysis Journal of the Operational Research Society. ,vol. 53, pp. 457- 467 ,(2002) , 10.1057/PALGRAVE.JORS.2601330