Infinite Dimensional Mathematical Programming

作者: Terry L. Friesz

DOI: 10.1007/978-0-387-72778-3_4

关键词:

摘要: In this chapter we are concerned with the generalization of finite-dimensional mathematical programming to infinite-dimensional vector spaces. This topic is pertinent dynamic optimization because in continuous time de facto occurs spaces since variable x (t), even if a scalar, has an infinity values for \(t \in \left[t_0, t_f\right] \subseteq \mathfrak{R}^{1}_{+}\) where t f < 0.

参考文章(23)
B. T. Poljak, Igor Vladimirovich Girsanov, D. Louvish, Lectures on Mathematical Theory of Extremum Problems ,(1972)
Richard Ernest Bellman, Introduction to the mathematical theory of control processes Academic Press. ,(1967)
David G. Luenberger, Optimization by Vector Space Methods ,(1968)
W. Fenchel, Convex cones, sets, and functions Princeton University. ,(1953)
Elijah Polak, Clifton D. Cullum, Michael D. Canon, Theory of optimal control and mathematical programming ,(1969)
Walter Rudin, Real and complex analysis ,(1966)
J. Budelis, A. Bryson, Some optimal control results for differential-difference systems IEEE Transactions on Automatic Control. ,vol. 15, pp. 237- 241 ,(1970) , 10.1109/TAC.1970.1099423