SOREX: subspace outlier ranking exploration toolkit

作者: Emmanuel Müller , Matthias Schiffer , Patrick Gerwert , Matthias Hannen , Timm Jansen

DOI: 10.1007/978-3-642-15939-8_44

关键词:

摘要: Outlier mining is an important data analysis task to distinguish exceptional outliers from regular objects. In recent research novel outlier ranking methods propose focus on hidden in subspace projections of the data. However, focusing only detection these approaches miss provide reasons why object should be considered as outlier. In this work, we a toolkit for exploration rankings. To enable and complete knowledge extraction further descriptive information addition pure outliers. As wittinesses outlierness object, about relevant describing properties. We provided SOREX open source framework our website it easily extensible suitable educational purposes emerging area.

参考文章(10)
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data Advances in Knowledge Discovery and Data Mining. pp. 831- 838 ,(2009) , 10.1007/978-3-642-01307-2_86
Emmanuel Müller, Ira Assent, Ralph Krieger, Timm Jansen, Thomas Seidl, Morpheus Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08. pp. 1089- 1092 ,(2008) , 10.1145/1401890.1402026
Hans-Peter Kriegel, Matthias S hubert, Arthur Zimek, Angle-based outlier detection in high-dimensional data Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08. pp. 444- 452 ,(2008) , 10.1145/1401890.1401946
Aleksandar Lazarevic, Vipin Kumar, Feature bagging for outlier detection knowledge discovery and data mining. pp. 157- 166 ,(2005) , 10.1145/1081870.1081891
Charu C. Aggarwal, Philip S. Yu, Outlier detection for high dimensional data international conference on management of data. ,vol. 30, pp. 37- 46 ,(2001) , 10.1145/375663.375668
Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl, VISA ACM SIGKDD Explorations Newsletter. ,vol. 9, pp. 5- 12 ,(2007) , 10.1145/1345448.1345451
Emmanuel Muller, Ira Assent, Uwe Steinhausen, Thomas Seidl, OutRank: ranking outliers in high dimensional data international conference on data engineering. pp. 600- 603 ,(2008) , 10.1109/ICDEW.2008.4498387
Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander, LOF: identifying density-based local outliers international conference on management of data. ,vol. 29, pp. 93- 104 ,(2000) , 10.1145/335191.335388
Ira Assent, Stephan Günnemann, Emmanuel Müller, Thomas Seidl, Evaluating Clustering in Subspace Projections of High Dimensional Data The Vldb Journal. pp. 1270- 1281 ,(2009)
Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl, Evaluating clustering in subspace projections of high dimensional data Proceedings of the VLDB Endowment. ,vol. 2, pp. 1270- 1281 ,(2009) , 10.14778/1687627.1687770