On Nonlinear Normal Modes of Systems With Internal Resonance

作者: A. H. Nayfeh , C. Chin , S. A. Nayfeh

DOI: 10.1115/1.2888188

关键词:

摘要: A complex-variable invariant-manifold approach is used to construct the normal modes of weakly nonlinear discrete systems with cubic geometric nonlinearities and either a one-to-one or three-to-one internal resonance. The mode shapes are assumed be slightly curved four-dimensional manifolds tangent linear eigenspaces two involved in resonance at equilibrium position. dynamics on these governed by three first-order autonomous equations. In contrast case no resonance, number may more than modes. Bifrcations calculated investigated.

参考文章(11)
Ali Hasan Nayfeh, Method of normal forms ,(1993)
R.M. Rosenberg, On Nonlinear Vibrations of Systems with Many Degrees of Freedom Advances in Applied Mechanics. ,vol. 9, pp. 155- 242 ,(1966) , 10.1016/S0065-2156(08)70008-5
R. H. Rand, C. H. Pak, A. F. Vakakis, Bifurcation of nonlinear normal modes in a class of two degree of freedom systems 대한기계학회 춘추학술대회. pp. 129- 146 ,(1992) , 10.1007/978-3-7091-9223-8_10
A. H. Nayfeh, S. A. Nayfeh, On Nonlinear Modes of Continuous Systems Journal of Vibration and Acoustics. ,vol. 116, pp. 129- 136 ,(1994) , 10.1115/1.2930388
L. A. Month, R. H. Rand, The Stability of Bifurcating Periodic Solutions in a Two-Degree-of-Freedom Nonlinear System Journal of Applied Mechanics. ,vol. 44, pp. 782- 784 ,(1977) , 10.1115/1.3424180
A. F. Vakakis, T. K. Caughey, A Theorem on the Exact Nonsimilar Steady-State Motions of a Nonlinear Oscillator Journal of Applied Mechanics. ,vol. 59, pp. 418- 424 ,(1992) , 10.1115/1.2899536
A.F. Vakakis, R.H. Rand, Normal modes and global dynamics of a two-degree-of-freedom non-linear system—I. Low energies International Journal of Non-Linear Mechanics. ,vol. 27, pp. 861- 874 ,(1992) , 10.1016/0020-7462(92)90040-E
S.W. Shaw, C. Pierre, Normal Modes for Non-Linear Vibratory Systems Journal of Sound and Vibration. ,vol. 164, pp. 85- 124 ,(1993) , 10.1006/JSVI.1993.1198
Richard H. Rand, A direct method for non-linear normal modes International Journal of Non-Linear Mechanics. ,vol. 9, pp. 363- 368 ,(1974) , 10.1016/0020-7462(74)90021-3
Neil Fenichel, Persistence and Smoothness of Invariant Manifolds for Flows Indiana University Mathematics Journal. ,vol. 21, pp. 193- 226 ,(1971) , 10.1512/IUMJ.1972.21.21017