Source Unfoldings of Convex Polyhedra via Certain Closed Curves

作者: Joseph O'Rourke , Costin Vîlcu , Jin-ichi Itoh

DOI:

关键词:

摘要: We extend the notion of a source unfolding convex polyhedron P to be based on closed polygonal curve Q in particular class rather than point. The requires that \lives cone" both sides; it includes simple, quasigeodesics. Cutting subset cut locus (in P) leads non-overlapping polyhedron. This gives new general method unfold surface any planar polygon.

参考文章(10)
S. Vakhrameyev, A. D. Aleksandrov, S. S. Kutateladze, Intrinsic geometry of convex surfaces ,(1967)
Lynn E. Dellenbarger, Intrinsic Geometry of Surfaces ,(1967)
Joseph O'Rourke, Costin Vîlcu, Conical Existence of Closed Curves on Convex Polyhedra arXiv: Discrete Mathematics. ,(2011)
Erik D. Demaine, Joseph O'Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra ,(2007)
William P Thurston, Shapes of polyhedra and triangulations of the sphere Geometry and Topology Monographs. ,vol. 1, pp. 511- 549 ,(1998) , 10.2140/GTM.1998.1.511
Micha Sharir, Amir Schorr, On Shortest Paths in Polyhedral Spaces ,(2015)
P. Pizzetti, Confronto fra gli angoli di due triangoli geodetici di eguali lati Rendiconti Del Circolo Matematico Di Palermo. ,vol. 23, pp. 255- 264 ,(1907) , 10.1007/BF03013522
Jin-ichi Itoh, Joseph O’Rourke, Costin Vîlcu, Star Unfolding Convex Polyhedra via Quasigeodesic Loops Discrete & Computational Geometry. ,vol. 44, pp. 35- 54 ,(2010) , 10.1007/S00454-009-9223-X
Val Pinciu, Erik D. Demaine, Stefan Langerman, Joseph O'Rourke, Zachary Abel, Sébastien Collette, Godfried T. Toussaint, Martin L. Demaine, David Charlton, Cauchy's arm lemma on a growing sphere arXiv: Computational Geometry. ,(2008)
K. Ieiri, J. Itoh, C. Vîlcu, Quasigeodesics and farthest points on convex surfaces Advances in Geometry. ,vol. 11, pp. 571- 584 ,(2011) , 10.1515/ADVGEOM.2011.033