Rapid state reduction of quantum systems using feedback control.

作者: Joshua Combes , Kurt Jacobs

DOI: 10.1103/PHYSREVLETT.96.010504

关键词:

摘要: We consider using Hamiltonian feedback control to increase the speed at which a continuous measurement purifies (reduces) state of quantum system, and thus preparation pure states. For an observable with $N$ equispaced eigenvalues, we show that there exists algorithm will up rate reduction by least factor $2(N+1)/3$.

参考文章(27)
B. E. Kane, A silicon-based nuclear spin quantum computer Nature. ,vol. 393, pp. 133- 137 ,(1998) , 10.1038/30156
David J. Tannor, Allon Bartana, On the Interplay of Control Fields and Spontaneous Emission in Laser Cooling Journal of Physical Chemistry A. ,vol. 103, pp. 10359- 10363 ,(1999) , 10.1021/JP992544X
H. M. Wiseman, G. J. Milburn, Quantum theory of field-quadrature measurements. Physical Review A. ,vol. 47, pp. 642- 662 ,(1993) , 10.1103/PHYSREVA.47.642
Shlomo E. Sklarz, David J. Tannor, Navin Khaneja, Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-levelΛsystem Physical Review A. ,vol. 69, pp. 053408- ,(2004) , 10.1103/PHYSREVA.69.053408
Christopher A. Fuchs, Kurt Jacobs, Information-tradeoff relations for finite-strength quantum measurements Physical Review A. ,vol. 63, pp. 062305- ,(2001) , 10.1103/PHYSREVA.63.062305
Kurt Jacobs, How to project qubits faster using quantum feedback Physical Review A. ,vol. 67, pp. 030301- ,(2003) , 10.1103/PHYSREVA.67.030301
V.P. Belavkin, P. Staszewski, A quantum particle undergoing continuous observation Physics Letters A. ,vol. 140, pp. 359- 362 ,(1989) , 10.1016/0375-9601(89)90067-4
M. R. James, Risk-sensitive optimal control of quantum systems Physical Review A. ,vol. 69, pp. 032108- ,(2004) , 10.1103/PHYSREVA.69.032108