Bioprocess Design for the Microbial Production of Natural Phenolic Compounds by Debaryomyces hansenii

作者: Belén Max , Francisco Tugores , Sandra Cortés-Diéguez , José M. Domínguez

DOI: 10.1007/S12010-012-9935-X

关键词:

摘要: Debaryomyces hansenii NRRL Y-7426 metabolised ferulic acid into different phenolic compounds using a factorial design where glucose concentration (in the range of 1–20 g/L), peptone (2–20 g/L) and yeast extract (0.2–10 g/L) were independent variables. The interrelationship between dependent operational variables was well fitted (R 2 > 0.95) to models including linear, interaction quadratic terms. Depending on nitrogen concentrations, which redirected metabolism, major degradation products 1,226.2 mg 4-vinyl guaiacol/L after 72 h (molar yield 86.0 %), 1,077.8 mg vanillic acid/L 360 h 91.1 %) or 1,682.6 mg acetovanillone/L 408 h 98.8 %) in fermentations carried out with 2,000 mg acid/L. Other metabolites such as vanillin, vanillyl alcohol 4-ethylguaiacol present lower amounts.

参考文章(47)
J P N Rosazza, Z Huang, L Dostal, T Volm, B Rousseau, Review: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product Journal of Industrial Microbiology & Biotechnology. ,vol. 15, pp. 457- 471 ,(1995) , 10.1007/BF01570016
K. Shiva Shanker, K. Hara Kishore, Sanjit Kanjilal, Sunil Misra, U. S. Narayana Murty, R. B. N. Prasad, Biotransformation of ferulic acid to acetovanillone using Rhizopus oryzae Biocatalysis and Biotransformation. ,vol. 25, pp. 109- 112 ,(2007) , 10.1080/10242420601141721
In-Young Lee, Timothy G Volm, John P.N Rosazza, Decarboxylation of ferulic acid to 4-vinylguaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems Enzyme and Microbial Technology. ,vol. 23, pp. 261- 266 ,(1998) , 10.1016/S0141-0229(98)00044-1
P. Barghini, F. Montebove, M. Ruzzi, A. Schiesser, Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells Applied Microbiology and Biotechnology. ,vol. 49, pp. 309- 314 ,(1998) , 10.1007/S002530051174
E. Clavijo, J. R. Menéndez, R. Aroca, Vibrational and surface-enhanced Raman spectra of vanillic acid Journal of Raman Spectroscopy. ,vol. 39, pp. 1178- 1182 ,(2008) , 10.1002/JRS.1959
H. Hatakeyama, E. Hayashi, T. Haraguchi, Biodegradation of poly(3-methoxy-4-hydroxy styrene) Polymer. ,vol. 18, pp. 759- 763 ,(1977) , 10.1016/0032-3861(77)90177-X
Susumu Iwabuchi, Takayuki Nakahira, Akira Inohana, Hideki Uchida, Kuniharu Kojima, Polymeric catechol derivatives. IV. Polymerization behavior of 4-vinylcatechols and some properties of their polymeric derivatives Journal of Polymer Science: Polymer Chemistry Edition. ,vol. 21, pp. 1877- 1884 ,(1983) , 10.1002/POL.1983.170210701
R B R Muijsers, E Van Den Worm, G Folkerts, C J Beukelman, A S Koster, D S Postma, F P Nijkamp, Apocynin inhibits peroxynitrite formation by murine macrophages British Journal of Pharmacology. ,vol. 130, pp. 932- 936 ,(2000) , 10.1038/SJ.BJP.0703401
John B. Sutherland, Don L. Crawford, Anthony L. Pometto III, Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Canadian Journal of Microbiology. ,vol. 29, pp. 1253- 1257 ,(1983) , 10.1139/M83-195
B. Falconnier, C. Lapierre, L. Lesage-Meessen, G. Yonnet, P. Brunerie, B. Colonna-Ceccaldi, G. Corrieu, M. Asther, Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways Journal of Biotechnology. ,vol. 37, pp. 123- 132 ,(1994) , 10.1016/0168-1656(94)90003-5